

 F
	factors in performance measurement, General steps
	failure to document systems, Ego management
	falling thresholds (RMON), RMON
	FAQ lists, Sources of Information
	fast scan option in nmap, nmap
	fiber splitters in patch devices, Access to Traffic
	fiber-optic cables, Installing New Cabling
	files, Using tcpdump, Using tcpdump, Filtering, tcpshow, tcpslice, nmap, arpwatch, mrtg configuration file, nemesis, doc, dnswalk, and lamers, Automating Documentation, Log Files and Auditing–tcpwrappers
		(see also configuration files)
	arpwatch data in, arpwatch
	command line output in, Automating Documentation
	decoding tcpdump files, tcpshow
	extracting data from, tcpslice
	filter files, Filtering
	IP scans, nmap
	log files, Log Files and Auditing–tcpwrappers
	name resolution results in, doc, dnswalk, and lamers
	tcpdump files, Using tcpdump, Using tcpdump
	writing data to packets, nemesis

	filtering, Interpreting results, Smurf Attacks, Using tcpdump, Using tcpdump, Controlling program behavior, Filtering–Compound filters., Address filtering., Address filtering., Protocol and port filtering., Protocol and port filtering., Packet characteristics., Packet characteristics., Compound filters., sanitize, Using ethereal, Display filters, Display filters, Display filters, Overview of SNMP, Interactive mode
		address filtering, Address filtering.
	blocking packets, Interpreting results
	compound filters, Compound filters., Display filters
	display filters, Display filters
	ethereal tool, Using ethereal, Display filters
	ntop traffic capture, Interactive mode
	operators in filters, Packet characteristics.
	packet characteristics, Packet characteristics.
	port filtering, Protocol and port filtering.
	preventing Smurf attacks, Smurf Attacks
	protocol filtering, Protocol and port filtering.
	sanitize tool, sanitize
	SNMP traffic, Overview of SNMP
	tcpdump tool, Using tcpdump, Using tcpdump, Controlling program behavior, Filtering–Compound filters.
		applying filters to data files, Using tcpdump
	filtering collected data, Controlling program behavior
	options, Filtering–Compound filters.
	output, Using tcpdump

	testing filters, Address filtering.

	finding tools and software, Generic Sources
	finger tool (cyberkit suite), Cyberkit
	fingerprinting programs, Stack Fingerprinting (see stack fingerprinting)
	fire codes, cabling and, Installing New Cabling
	firewalls, Security files, nmap, Politics and Security, hping, nemesis, Other tools, Remote logging, Security
		books and resources, Security
	configuration files, Security files
	flags and, nemesis
	personal firewalls, Politics and Security
	stealth scanning and, nmap
	syslog remote logging and, Remote logging
	testing with ipsend tool, Other tools
	testing with spoofed addresses, hping

	flags, netstat, arp, Options, nemesis
		in ARP tables, arp
	nemesis settings, nemesis
	ping flags, Options
	in routing tables, netstat

	flakeways, NISTNet
	flashing icons in tkined, ICMP monitoring
	flooding networks, Options, Switch Security, Packet Injection Tools, Load Generators–MGEN, Remote logging
		hosts with syslog messages, Remote logging
	load generators, Load Generators–MGEN
	packet injection tools, Packet Injection Tools
	ping tools, Options
	switches, Switch Security

	fluorescent lights, cabling and, Installing New Cabling
	following TCP streams, Using ethereal
	forged ARP packets, Switch Security
	forged IP addresses, Smurf Attacks (see spoofing addresses)
	forged syslog messages, Remote logging
	forking, preventing in snmpd, Agents and traps
	forwarding behavior in ARP tables, Kernel
	fping packet tool, fping, Sources for Tools
	Fraggle denial of service attacks, echoping
	fragmentation, Options, Path Discovery with traceroute, tcpflow, nmap
		diagnosing fragmentation problems, Options
	fragmented stealth packets, nmap
	packet capture and, tcpflow
	traceroute and, Path Discovery with traceroute

	frame buffers, vnc
	frames, ifconfig, Options, Performance Measurements, Capturing Data, Capturing Data
		capturing, Capturing Data
	framing errors, Capturing Data
	interface frame size capabilities, ifconfig
	performance measurements, Performance Measurements
	ping frame size options, Options

	framework packages for network management, Discovery and Mapping Tools
	framing types, adapters, Testing Adapters
	FreeBSD systems, Configuration Programs, Kernel, Simple examples, Options, Traffic Measurements with netstat, Protecting Yourself, NET SNMP (UCD SNMP), FreeBSD Ports
		configuration programs, Configuration Programs
	disabling Berkeley packet filter, Protecting Yourself
	NET SNMP, NET SNMP (UCD SNMP)
	nonzero values in netstat, Traffic Measurements with netstat
	ping flags, Options
	ping tools, Simple examples
	port collections, FreeBSD Ports
	recompiling kernel, Kernel

	“freely available”
 tools, Licenses
	fressh ssh tool, Sources for Tools
	FTP (file transfer protocol), lsof, Throughput Measurements, Device Identification, Web mode

 H
	h2n name server tool, Other tools, Sources for Tools
	hardware, General Approaches to Troubleshooting, Documentation, Traffic Measurements with netstat, Device Discovery and Mapping, Device Identification–nmap Revisited, Microsoft Windows, MGEN, Network Emulators and Simulators
		discovering, Device Discovery and Mapping (see device discovery)
	emulators, Network Emulators and Simulators
	hardware errors, Traffic Measurements with netstat
	identifying, Device Identification–nmap Revisited
	inventories, Documentation
	load generator devices, MGEN
	monitoring, Microsoft Windows (see device monitoring)
	swapping, General Approaches to Troubleshooting

	headers, Controlling program behavior, Packet characteristics., Using ethereal, Using ethereal, hping
		capturing, Controlling program behavior, Using ethereal
	displaying in packets, Using ethereal
	hping settings, hping
	structure of, Packet characteristics.

	helpdesks, Sources of Information
	hexadecimal capture, Controlling what’s displayed, Using ethereal, hping
	hexdump analysis tool, Controlling what’s displayed
	hidden transmission points, pathchar, bing
	higher-level services, filtering, Protocol and port filtering.
	home pages for mrtg graphs, mrtg configuration file
	honesty in network management, Professionalism
	hops, netstat, Interpreting results, Path Discovery with traceroute, Options, pathchar
		limiting number in traceroute, Options
	pathchar results, pathchar
	in route discovery, Path Discovery with traceroute
	in routing tables, netstat
	TTL counts and, Interpreting results

	host configuration, Utilities–Scanning Tools, System Configuration Files–Log files, Microsoft Windows–Microsoft Windows
		Microsoft Windows, Microsoft Windows–Microsoft Windows
	system configuration files, System Configuration Files–Log files
	utilities, Utilities–Scanning Tools

	host domain name tool, nslookup and dig, Sources for Tools
	hostname configuration tool, Microsoft Windows
	hosts, Microsoft Windows, Using ping, Problems with ping, fping, Access to Traffic, What, When, and Where, Host-Monitoring Tools, Interactive mode, Web mode, Web mode, Microsoft Windows, nslookup and dig, vnc, ssh
		configuration, Microsoft Windows (see host configuration)
	connectivity, Using ping
	displaying remote X Windows sessions on, vnc
	host authentication, ssh
	host-monitoring tools, What, When, and Where, Host-Monitoring Tools, Microsoft Windows
	link-level addresses, Problems with ping
	listing information with nslookup, nslookup and dig
	ntop results, Interactive mode, Web mode
	pinging multiple hosts, fping
	sorting traffic display by, Web mode
	traffic capture and, Access to Traffic

	hourly charts of traffic, cricket
	hping packet tool, Custom Packets Generators, hping–hping, Firewall testing, Sources for Tools
		custom packet generation, Custom Packets Generators
	source web site, Sources for Tools
	testing connectivity with, hping–hping
	testing firewalls with, Firewall testing

	hping2 packet tool, hping–hping
	HTML pages of traffic patterns, mrtg
	HTTP (Hypertext Transfer Protocol), nmap, Device Identification, queso, Non-SNMP Approaches, Web mode, Web mode, HTTP, HTTP
		monitoring devices with HTTP servers, Non-SNMP Approaches
	ntop traffic results, Web mode
	performance and security problems, HTTP
	ports, nmap, Device Identification
	secure HTTP, Web mode
	stack fingerprinting ports and, queso
	troubleshooting, HTTP

	hubs, Access to Traffic, Access to Traffic, Switch Security, Mapping or Diagramming, Point-Monitoring Tools
		compared to switches, Access to Traffic
	point-monitoring tools and, Point-Monitoring Tools
	security and, Switch Security
	traffic capture and, Access to Traffic
	unmanaged hubs, Mapping or Diagramming

	HUP command, using with snmpd, Agents and traps
	hypotheses in troubleshooting, Generic Troubleshooting

 Index

A note on the digital index

 A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers,
 it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text
 in which the marker appears.

 Symbols
	80-20 and 90-10 Rules, Web mode
	&& operator, Compound filters.
	* (asterisk) wildcard, nmap
	! operator, Compound filters.
	|| operator, Compound filters.

 Chapter 12. Troubleshooting Strategies

While many of the tools described in this book are extremely
 powerful, no one tool does everything. If you have been downloading and
 installing these tools as you have read this book, you now have an
 extensive, versatile set of tools. When faced with a problem, you should
 be equipped to select the best tool or tools for the particular job,
 augmenting your selection with other tools as needed.
This chapter outlines several strategies that show how these tools
 can be used together. When troubleshooting, your approach should be to
 look first at the specific task and then select the most appropriate
 tool(s) based on the task. I do not describe the details of using the
 tools or show output in this chapter. You should already be familiar with
 these from the previous chapters. Rather, this chapter focuses on the
 selection of tools and the overall strategy you should take in using them.
 If you feel confident in your troubleshooting skills, you may want to skip
 this chapter.
Generic Troubleshooting

 Any troubleshooting task is basically a series of steps.
 The actual steps you take will vary from problem to problem. Later steps
 in the process may depend on the results from earlier steps. Still, it
 is worth thinking about and mapping out the steps since doing this will
 help you remain focused and avoid needless steps. In watching others
 troubleshoot, I have been astonished at how often people perform tests
 with no goal in mind. Often the test has no relation to the problem at
 hand. It is just something easy to do. When your car won’t start, what
 is the point of checking the air pressure of the tires?
For truly difficult problems, you will need to become formal and
 systematic. A somewhat general, standard series of steps you can go
 through follows, along with a running example. Keep in mind, this set of
 steps is only a starting point.
	 Document. Before you do anything else, start
 documenting what you are doing. This is a real test of willpower and
 self-discipline. It is extremely difficult to force yourself to sit
 down and write a problem description or take careful notes when your
 system is down or crackers are running rampant through your
 system.[1] This is not just you; everyone has this problem. But
 it is an essential step for several reasons.
Depending on your circumstances, management may require a
 written report. Even if this isn’t the usual practice, if an outage
 becomes prolonged or if there are other consequences, it might
 become necessary. This is particularly true if there are some legal
 consequences of the problem. An accurate log can be essential in
 such cases.
If you have a complex problem, you are likely to forget at
 some point what you have actually done. This often means starting
 over. It can be particularly frustrating if you appear to have found
 a solution, but you can’t remember exactly what you did. A seemingly
 insignificant step may prove to be a key element in a
 solution.

	 Collect information and identify symptoms. Actually,
 this step is two intertwined steps. But they are often so
 intertwined that you usually can’t separate them. You must collect
 information while filtering that information for indications of
 anomalous behavior. These two steps will be repeated throughout the
 troubleshooting process. This is easiest when you have a clear sense
 of direction.
As you identify symptoms, try to expand and clarify the
 problem. If the problem was reported by someone else, then you will
 want to try to recreate the problem so that you can observe the
 symptoms directly. Keep in mind, if you can’t recognize normal
 behavior, you won’t be able to recognize anomalous behavior. This
 has been a recurring theme in this book and a reason you should
 learn how to use these tools before you need them.
As an example, the first indication of a problem might be a
 user complaining that she cannot telnet
 from host bsd1 to host
 lnx1. To expand and clarify the problem, you
 might try different applications. Can you connect using ftp ? You might look to see if
 bsd1 and lnx1 are on the
 same network or different networks. You might see if
 lnx1 can reach bsd1. You
 might include other local and remote hosts to see the extent of the
 problem.

	Define the problem. Once you have a clear idea, you
 can begin coming to terms with the problem. This is not the same as
 identifying the symptoms but is the process of combining the
 symptoms and making generalizations. You are looking for common
 elements that allow you to succinctly describe the anomalous
 behavior of a system.
Your problem definition may go through several refinements.
 Continuing with the previous problem, you might, over time, generate
 the following series of problem definitions:
	bsd1 can’t
 telnet to lnx1.

	bsd1 can’t connect to
 lnx1.

	bsd1 can’t connect to
 lnx1, but lnx1 can connect to other hosts
 including bsd1.

	Hosts on the same network as lnx1 can’t connect to lnx1.

	Hosts on the same network as lnx1 can’t connect to lnx1, but hosts on remote networks
 can connect to lnx1.

(Yes, this was a real problem, and no, I didn’t get that last
 one backward.)
It is natural to try to define the problem as quickly as
 possible, but you shouldn’t be too tied to your definition. Try to
 keep an open mind and be willing to redefine your problem as your
 information changes.

	 Identify systems or subsystems involved. As you
 collect information, as seen in the previous example, you will
 define and refine not only the nature of the problem, but also the
 scope of the problem. This is the step in which we divide and
 hopefully conquer our problem.
In this example, we have worked outward from one system to
 include a number of systems. Usually troubleshooting tries to narrow
 the scope of the problem, but as seen from this example, in
 networking just the opposite may happen. You must discover the full
 scope of the problem before you can narrow your focus. In this
 running example, realizing that remote connections could connect was
 a key discovery.

	 Develop a testable hypothesis. Of course, what you can
 test will depend on what tools you have, the rationale for this
 book. But don’t let tools drive your approach. With the definition
 of the problem and continual refinement comes the generation of the
 hypotheses as to the cause or nature of the problem. Such
 generalizations are relatively worthless unless they can be
 verified. (Remember those lectures on the scientific method in high
 school?) In this sense, developing a set of tests is more important
 than having an exact definition of a problem. In many instances, if
 you know the source of the problem, you can correct it without fully
 understanding the problem. For example, if you know an Ethernet card
 is failing, you can replace it without ever worrying about which
 chip on the card malfunctioned. I’m not suggesting that you don’t
 want to understand the problem, but that there are levels of
 understanding. Your hypotheses must be guided by what you can test.
 As in science, an untestable hypothesis is worthless.
In general, you want tests that will reduce the size of the
 search space (i.e., identify subsystem involved), that are easy to
 apply, that do not create further problems, and so on.
In our running example, a necessary first step in making a
 connection is doing address resolution. This suggests that there
 might be some problem with the ARP mechanism. Notice that this is
 not a full hypothesis, but rather a point of further investigation.
 Having expanded the scope of the problem, we are attempting to focus
 in on subsystems to reduce the problem. Also notice that I haven’t
 used any fancy tools up to this point. Keep it simple as long as you
 can.

	Select and apply tests. Not all tests are created equally.
 Some will be much easier to apply, while others will provide more
 information. Determining the optimal order for a set of tests is
 largely a judgment call. Clearly, the simple tests that answer
 questions decisively are the best.
Returning to our example, there are several ways we could
 investigate whether the ARP mechanism is functioning correctly. One
 way would be to use tcpdump or
 ethereal to capture traffic on
 the network to see if the ARP requests and responses are present. A
 simpler test, however, is to use the arp command to see if the appropriate
 entries are in the ARP cache on the hosts that are trying to connect
 to lnx1. In this instance, it
 was observed that the entries were missing from all the hosts
 attempting to connect to lnx1.
 The exception was the router on the network that had a much longer
 cache timeout than did the local hosts. This also explained why
 remote hosts could connect but local hosts could not connect. The
 remote hosts always went through the router, which had cached the
 Ethernet address bypassing the ARP mechanism. Note that this was not
 a definitive test but was done first because it was much
 easier.

	 Assess results. As you perform tests, you will need to
 assess the results, refine your tests, and repeat the process. You
 will want new tests that confirm your results. This is clearly an
 iterative process.
With our extended example, two additional tests were possible.
 One was to manually add the address of lnx1 to bsd1’s ARP table using the arp command. When this was done,
 connectivity was restored. When the entry was deleted, connectivity
 was lost. A more revealing but largely unnecessary test using
 packet-capture software to watch the exchange of packets between the
 bsd1 and lnx1 revealed that bsd1’s ARP requests were being ignored by
 lnx1.

	 Develop and assess solutions. Once you have clearly
 identified the problem, you must develop and assess possible
 solutions. With many problems, there will be several possible
 solutions to consider. You should not hastily implement a solution
 until you have thought out the consequences. With lnx1, solutions ranged from rebooting the
 system to reinstalling software. I chose the simplest first and
 rebooted the system.

	Implement and evaluate your solution. Once you have
 decided on a solution and have implemented it, you should confirm
 the proper operation of your system. Depending on the scope of the
 changes needed, this may mean extensive testing of the system and
 all related systems.
With our running problem, this was not necessary. Connectivity
 was fully restored when the system was rebooted. What caused the
 problem? That was never fully resolved, but since the problem never
 recurred, it really isn’t an issue.
If restarting the system hadn’t solved the problem, what would
 have been the next step? In this case, the likely problem was
 corrupted system software. If you are running an integrity checker
 like tripwire, you might try
 locating anything that has changed and do a selective
 reinstallation. Otherwise, you may be faced with reinstalling the
 operating system.

One last word of warning. It is often tempting to seize on an
 overly complex explanation and ignore simpler explanations. Frequently,
 problems really are complex, but not always. It is worth asking yourself
 if there is a simpler solution. Often, this will save a tremendous
 amount of time.

Task-Specific Troubleshooting

 The guidelines just given are a general or generic
 overview of troubleshooting. Of course, each problem will be different,
 and you will need to vary your approach as appropriate. The remainder of
 this chapter consists of guidelines for a number of the more common
 troubleshooting tasks you might face. It is hoped that these will give
 you further insight into the process.
Installation Testing

 Ironically, one of the best ways to save time and avoid
 troubleshooting is to take the time to do a thorough job of testing
 when you install software or hardware. You will be testing the system
 when you are most familiar with the installation process, and you will
 avoid disruptions to service that can happen when a problem isn’t
 discovered until the software or hardware is in use.
This is a somewhat broad interpretation of troubleshooting, but
 in my experience, there is very little difference between the testing
 you will do when you install software and the testing you will do when
 you encounter a problem. Overwhelmingly the only difference for most
 people is the scope of the testing done. Most people will test until
 they believe that a system is working correctly and then stop.
 Failures, particularly multiple failures, may leave you skeptical,
 while some people tend to be overly optimistic when installing new
 software.
Firewall testing

 Because of the complexities, firewall testing is an
 excellent example of the problems that installation testing may
 present. Troubleshooting a firewall is a demanding task for several
 reasons. First, to avoid disruptions in service, initial firewall
 testing should be done in an isolated environment before moving on
 to a production environment.
Second, you need to be very careful to develop an
 appropriate set of tests so that you don’t leave gaping holes in
 your security. You’ll need to go through a firewall rule by rule.
 You won’t be able to check every possibility, but you should be able
 to test each general type of traffic. For example, consider a rule
 that passes HTTP traffic to your web server. You will want to pass
 traffic to port 80 on that server. If you are taking the approach of
 denying all traffic that is not explicitly permitted, potentially,
 you will want to block traffic to that host at all other ports. You
 will also want to block traffic to port 80 on other hosts.[2] Thus, you should develop a set of three tests for this
 one action. Although there will be some duplicated tests, you’ll
 want to take the same approach for each rule. Developing an explicit
 set of tests is the key step in this type of testing.
The first step in testing a firewall is to test the
 environment in which the firewall will function without the
 firewall. It can be extraordinarily frustrating to try to debug
 anomalous firewall behavior only to discover that you had a routing
 problem before you began. Thus, the first thing you will want to do
 is turn off any filtering and test your routing. You could use tools
 like ripquery to retrieve
 routing tables and examine entries, but it is probably much simpler
 to use ping to check
 connectivity, assuming ICMP ECHO_REQUEST packets aren’t being
 blocked. (If this is the case, you might try tools like nmap or hping.)
You’ll also want to verify that all concomitant software is
 working. This will include all intrusion detection software,
 accounting and logging software, and testing software. For example,
 you’ll probably use packet capture software like tcpdump or ethereal to verify the operation of your
 firewall and will want to make sure the firewall is working
 properly. I hate to admit it, but I’ve started packet capture
 software on a host that I forgot was attached to a switch and banged
 my head wondering why I wasn’t seeing anything. Clearly, if I had
 used this setup to make sure packets were blocked without first
 testing it, I could have been severely misled.
 Test the firewall in isolation. If you are adding
 filtering to a production router, admittedly this is going to be a
 problem. The easiest way to test in isolation is to connect each
 interface to an isolated host that can both generate and capture
 packets. You might use hping,
 nemesis, or any of the other
 custom packet generation software discussed in Chapter 9. Work through each
 of your tests for each rule with the rule disabled and enabled. Be
 sure you explicitly document all your tests, particularly the
 syntax.
Once you are convinced that the firewall is working, it is
 time to move it online. If you can schedule offline testing, that is
 the best approach. Work through your tests again with and without
 the filters enabled. If offline testing isn’t possible, you can
 still go through your tests with the filters enabled.
Finally, don’t forget to come back and go through these tests
 periodically. In particular, you’ll want to reevaluate the firewall
 every time you change rules.

Performance Analysis and Monitoring

 If a system simply isn’t working, then you know
 troubleshooting is needed. But in many cases, it may not be clear that
 you even have a problem. Performance analysis is often the first step
 to getting a handle on whether your system is functioning properly.
 And it is often the case that careful performance analysis will
 identify the problem so that no further troubleshooting is
 needed.
Performance analysis is another management task that hinges on
 collecting information. It is a task that you will never complete, and
 it is important at every stage in the system’s life cycle. The most
 successful network administrator will take a proactive approach,
 addressing issues before they become problems. Chapter 7 and Chapter 8 discussed the use of
 specific tools in greater detail.
For planning, performance analysis is used to compare systems,
 establish system requirements, and do capacity planning and
 forecasting. For management, it provides guidance in configuring and
 tuning the system. In particular, the identification of bottlenecks
 can be essential for management, planning, and troubleshooting.
 There are three general approaches to performance
 analysis—analytical modeling,
 simulations, and
 measurement. Analytical models are mathematical
 models usually based on queuing theory. Simulations are computer
 models that attempt to mimic the behavior of the system through
 computer programs. Measurement is, of course, the collection of data
 from an existing network. This book has focused primarily on
 measurement (although simulation tools were mentioned in Chapter 9).
Each approach has its role. In practice, there can be a
 considerable overlap in using these approaches. Analytical models can
 serve as the basis for simulations, or direct measurements may be
 needed to supply parameters used with analytical models or
 simulations.
Measurement has its limitations. Obviously, the system must
 exist before measurements can be made so it may not be a viable tool
 for planning. Measurements tend to produce the most variable results.
 And many things can go wrong with measurements. On the positive side,
 measurement carries a great deal of authority with most people. When
 you say you have measured something, this is treated as irrefutable
 evidence by many, often unjustifiably.
General steps

Measuring performance is something of an art. It is
 much more difficult to decide what to measure and how to make the
 actual measurements than it might appear at first glance. And there
 are many ways to waste time collecting data that will not be useful
 for your purposes.
What follows is a fairly informal description of the steps
 involved in performance analysis. As I said before, listing the
 steps can be very helpful in focusing attention on some parts of the
 process that might otherwise be ignored.[3] Of course, every situation is different, so these
 steps are only an approximation. Designing performance analysis
 tests is an iterative process. You should go back through these
 steps as you proceed, refining each step as needed.
	State your goal. This is the question you want to
 answer. At this point, it may be fairly vague, but you will
 refine it as you progress. You need a sense of direction to get
 started. A common mistake is to allow a poorly defined goal to
 remain vague throughout the process, so be sure to revisit this
 step often. Also, try to avoid goals that bias your approach.
 For instance, set out to compare systems rather than show that
 one system is better than another.
 As an example, a network administrator might ask
 if the network backbone is adequate to support current levels of
 traffic. While an extremely important question, it is quite
 vague at this point. But stating the goal allows you to start
 focusing on the problem. For example, formally stating this
 problem may lead you to ask what adequate
 really means. Or you might go on to consider what the relevant
 time frame is, i.e., what current
 means.

	Define your system. The definition of your system
 will vary with your goal. You will need to decide what parts of
 the system to include and in what detail. You may want to
 exclude those parts outside your control. If you are interested
 in server performance, you will undoubtedly want to consider the
 various subsystems of the server separately—such as disks,
 memory, CPU, and network interfaces.
With the backbone example, what exactly is the backbone?
 Certainly it will include equipment such as routers and
 switches, but does it include servers? If you do include
 servers, you will want to view the server as a single entity, a
 source or sink for network traffic perhaps, but not component by
 component.

	Identify possible outcomes. This step consists of
 identifying possible answers to the question you want to answer.
 This is a refinement of Step 1 but should be addressed after the
 parts of the system are identified. Identifying outcomes
 establishes the level of your interest, how much detail you
 might need, and how much work you are going to have to do. You
 are determining the granularity of your measurements with this
 step.
For example, possible outcomes for the question of
 backbone performance might be that performance is adequate, that
 the system suffers minor congestion during the periods of
 heaviest load, or that the system is usually suffering serious
 congestion with heavy packet loss. For many purposes, just
 selecting one of these three answers might be adequate. However,
 in some cases, you may want a much more descriptive answer. For
 example, you may want some estimation of the average
 utilization, maximum utilization, percent of time at maximum
 utilization, or number of lost packets. Ultimately, the degree
 of detail required by the answer will determine the scope of the
 project. You need to make this decision early, or you may have
 to repeat the project to gather additional information.

	Identify and select what you will measure. Metrics
 are those system characteristics that can be quantitatively
 measured. The choice of a metric will depend on the services you
 are examining. Be careful in your selection. It is often
 tempting to go with metrics based on how easy the data is to
 collect rather than on how relevant the data is to the goal. For
 a network backbone, this might include throughput, delay,
 utilization, number of packets sent, number of packets
 discarded, or average packet size.

	 If appropriate, identify test parameters and
 factors.[4] Parameters and factors are characteristics of the
 system that affect performance that can be changed. You’ll
 change these to see what effect they have on the system.
 Parameters include both system and load (or traffic) parameters.
 Try to be as systematic as possible in identifying and
 evaluating parameters to avoid arbitrary decisions. It is very
 easy to overlook relevant parameters or include irrelevant
 ones.
For a network backbone, system parameters may include
 interface speeds and link speeds or the use of load sharing. For
 traffic, you might use a tool like mgen to add an additional load. But
 for simple performance measurement, you may elect to change
 nothing.

	Select tools. Once you have a clear picture of
 what you want to do, it is time to select the tools of interest.
 It is all too easy to do this too soon. Don’t let the tools you
 have determine what you are going to do. Tools for backbone
 performance might include using ntop on a link or SNMP-based
 tools.

	Establish measurement constraints. On a production
 network, establishing constraints usually means deciding when
 and where to make your measurements. You will also need to
 decide on the frequency and duration of your measurements. This
 is often more a matter of intuition than engineering. This is
 something that you will have to do iteratively, adjusting your
 approach based on the results you get. Unless you have a very
 compelling reason, measurements should be taken under
 representative conditions.
For backbone performance, for example, router interfaces
 are the obvious places to look. Server interfaces are another
 reasonable choice. You may also need to look at individual links
 as well, particularly in a switched network. You will also need
 to sample at different times, including in particular those
 times when the load is heaviest. (Use mrtg or cricket to determine this.) You will
 need to ensure that your measurements have the appropriate level
 of detail. If you have isochronous applications, such as video
 conferencing, that are extremely sensitive to delay, five-minute
 averages will not provide adequate information.

	 Review your experimental design. Once you have
 decided what you want to measure and how, you should look back
 over the process before you begin. Are there any optimizations
 you can make to minimize the amount of work you will have to do?
 Will the measurements you make really answer your questions? It
 is wise to review these questions before you invest large
 amounts of time.

	Collect data. The single most important
 consideration in collecting data is that you adequately document
 what you are doing. It is an all too common experience to
 discover that you have a wonderful collection of data, but you
 don’t fully know or remember the circumstances surrounding its
 collection. Consequently, you don’t know how to interpret it. If
 this happens, the only thing you can do is discard the data and
 start over. Remember, collecting data is an iterative process.
 You must examine your results and make adjustments as needed. It
 is too easy to continue collecting worthless data when even a
 cursory examination of your data would have revealed you were on
 the wrong track.

	Analyze data. Once the data is collected, you must
 analyze, interpret, and act upon your results. This analysis
 will, of course, depend heavily on the context and goals of the
 investigation. But an essential element is to condense the data
 and extract the needed information, presenting it in a concise
 form. It is often the case that measurements will create massive
 amounts of data that are meaningless until carefully
 analyzed.
Don’t get too carried away. Often the simplest analyses
 are of greater value than overly complex analyses. Simple
 analyses can often be more easily understood. But whatever you
 conclude, you’ll need to do it all again. System performance
 analysis is a never-ending task.

Bottleneck analysis

 Since networks are composed of a number of pieces, if
 the pieces are not well matched, poor performance may depend on the
 behavior of a single component. Bottleneck analysis is the process
 of identifying this component.
When looking at performance, you’ll need to be sure you get a
 complete picture. Generally, one bottleneck will dominate
 performance statistics. Many systems, however, will have multiple
 bottlenecks. It’s just that one bottleneck is a little worse than
 the others. Correcting one bottleneck will simply shift the
 problem—the bottleneck will move from one component to another. When
 doing performance monitoring, your goal should be to discover as
 many bottlenecks as possible.
Often identifying a bottleneck is easy. Once you have a clear
 picture of your network’s architecture, topology, and uses,
 bottlenecks will be obvious. For example, if 90% of your network
 traffic is to the Internet and you have a gigabit backbone and a
 56-Kbps WAN connection, you won’t need a careful analysis to
 identify your bottleneck.
Identifying bottlenecks is process dependent. What may
 be a bottleneck for one process may not be a problem for another.
 For example, if you are moving small files, the delay in making a
 connection will be the primary bottleneck. If you are moving large
 files, the speed of the link may be more important.
Bottleneck analysis is essential in planning because
 it will tell you what improvements will provide the greatest benefit
 to your network. The only real way to escape bottlenecks is to
 grossly overengineer your network, not something you’ll normally
 want to do. Thus, your goal should not be to completely eliminate
 bottlenecks but to minimize their impact to the point that they
 don’t cause any real problems. Upgrading the network in a way that
 doesn’t address bottlenecks will provide very little benefit to the
 network. If the bottlenecks on your network are a slow WAN
 connection and slow servers, upgrading from Fast Ethernet to Gigabit
 Ethernet will be a foolish waste of money. The key consideration
 here is utilization. If you are seeing 25% utilization with Fast
 Ethernet, don’t be surprised to see utilization drop below 3% with
 Gigabit Ethernet. But you should be aware that even if the
 utilization is low, increasing the capacity of a line will shorten
 download times for large files. Whether this is worthwhile will
 depend on your organization’s mission and priorities.
Here is a rough outline of the steps you might go through to
 identify a bottleneck:
	Map your network. The first step is to develop a
 clear picture of your network’s topology. To do this, you can
 use the tools described in Chapter 6. tkined might be a good choice. Often
 potential bottlenecks are obvious once you have a clear picture
 of your network. At the very least, you may be able to
 distinguish the parts of the network that are likely to have
 bottlenecks from parts that don’t need to be examined, reducing
 the work you will have to do.

	Identify time-dependent behavior. The problems
 bottlenecks cause, unless they are really severe, tend to come
 and go. The next logical step is to locate the most heavily used
 devices and the times when they are in greatest use. You’ll want
 to use a tool like mrtg or
 cricket to identify
 time-dependent behavior. (Understanding time-dependent behavior
 can also be helpful in identifying when you can work on the
 problem with the least impact on users.)

	 Pinpoint the problems. At this point, you should
 have narrowed your focus to a few key parts of the network and a
 few key times. Now you will want to drill down on specific
 devices and links. ntop is
 a likely choice at this point, but any SNMP-based tool may be
 useful.

	Select the tool. How you will proceed from here will
 depend on what you have discovered. It is likely that you will
 be able to classify the problem as stemming from an edge device,
 such as a server or a path between devices. Doing so will
 simplify the decision of what to do next.
 If you believe the problem lies with a path, you
 can use the tools described in Chapter 4 to drill down
 to a specific device or single link. You’ll probably want to get
 an idea of the nature of the traffic over the link. ntop is one choice, or you could use
 a tool like tcpdump,
 ethereal, or one of the
 tools that analyzes tcpdump
 traffic.
For a link device like a router or switch, you’ll
 need to look at basic performance. SNMP-based tools are the best
 choice here.
For end devices, you need to look at the
 performance of the device at each level of the communications
 architecture. You could use spray to examine the interface
 performance. For the stack, you might compare the time between
 SYN and ACK packets with the time between application packets.
 (Use ethereal or tcpdump to collect this information.)
 The setup times should be independent of the application,
 depending only on the stack. If the stack responds quickly and
 the application doesn’t, you’ll need to focus on the
 application.

	 Fix the problem. Once you have an idea of the
 source of the problem, you can then decide how to deal with it.
 For poor link performance, you have several choices. You can
 upgrade the link bandwidth or alter the network topology to
 change the load on the link. Adding interfaces to a server is
 one very simple solution. Attaching a server to multiple subnets
 is a quick way to decrease traffic between those subnets.
 Policy-based routing is yet another approach. You can use
 routing priorities to ensure that important traffic is handled
 preferentially.
For an edge device such as an attached server, you’ll want
 to distinguish among hardware problems, operating system
 problems, and application problems, then upgrade
 accordingly.

Bottleneck analysis is something you should do on an ongoing
 basis. The urgency will depend on user perceptions. If users are
 complaining, it doesn’t matter what the numbers say, you have a
 problem. If users aren’t complaining, your analysis is less pressing
 but should still be done.

Capacity planning

 Capacity planning is an extremely important task. Done
 correctly, it is also an extremely complex and difficult task, both
 to learn and to do. But this shouldn’t keep you from attempting it.
 The description here can best be described as a crude, first-order
 approximation of capacity planning. But it will give you a place to
 start while you are learning.
 Capacity planning is really an umbrella that describes
 several closely related activities. Capacity
 management is the process of allocating resources in a
 cost-efficient way. It is concerned with the resources that you
 currently have. (As you might guess, this is closely related to
 bottleneck analysis.) Trend analysis is the
 process of looking at system performance over time, trying to
 identify how it has changed in the past with the goal of predicting
 future changes. Capacity planning attempts to
 combine capacity management and trend analysis. The goal is to
 predict future needs to provide for effective planning.
The basic steps are fairly straightforward to describe, just
 difficult to carry out. First, decide what you need to measure. That
 means looking at your system in much the same way you did with
 bottleneck analysis but augmenting your analysis with anything you
 know about the future growth of your system. You’ll need to think
 about your system in context to do this.
 Next, select appropriate tools to collect the
 information you’ll need. (mrtg
 and cricket are the most
 obvious tools among those described in this book, but there are a
 number of other viable tools if you are willing to do the work to
 archive the data.) With the tools in place, begin monitoring your
 system, recording and archiving appropriate data. Deciding what to
 keep and how to organize it is a tremendously difficult problem.
 Every situation is different. Each situation is largely a question
 of balancing the amount of work involved in keeping the data in an
 organized and accessible manner with the likelihood that you will
 actually use it. This can come only from experience.
Once you have the measurements, you will need to
 analyze them. In general, focus on areas that show the greatest
 change. Collecting and analyzing data will be an iterative process.
 If little is different from one measurement to the next, then
 collect data less frequently. When there is high variability,
 collect more often.
Finally, you’ll make your predictions and adjust your system
 accordingly.
There are a number of difficulties in capacity
 planning. Perhaps the greatest difficulty comes with unanticipated,
 fundamental changes in the way your network is used. If you will be
 offering new services, predictions based on trends that predate
 these services will not adequately predict new needs. For example,
 if you are introducing new technologies such as Internet telephony
 or video, trend analysis before the fact will be of limited value.
 There is a saying that you can’t predict how many people will use a
 bridge by counting how many people are currently swimming across the
 river. If this is the case, about the best you can do is look to
 others who have built similar bridges over similar rivers.
 Another closely related problem is differential
 growth. If your network, like most, provides a variety of different
 services, then they are probably growing at different rates. This
 makes it very difficult to predict aggregate performance or need if
 you haven’t adequately collected data to analyze individual
 trends.
 Yet another difficulty is motivation. The key to trend
 analysis is keeping adequate records, i.e., measuring and recording
 information in a way that makes it accessible and usable. This is
 difficult for many people since the records won’t have much
 immediate utility. Their worth comes from being able to look back at
 them over time for trends. It is difficult to invest the time needed
 to collect and maintain this data when there will be no immediate
 return on the effort and when fundamental changes can destroy the
 utility of the data.
You should be aware of these difficulties, but you should not
 let them discourage you. The cost of not doing capacity planning is
 much greater.

[1] Compromised hosts are a special problem requiring special
 responses. Documentation can be absolutely essential,
 particularly if you are contemplating legal action or have
 liability concerns. Documentation used in legal actions has
 special requirements. For more information you might look at
 Simson Garfinkel and Gene Spafford’s Practical UNIX
 & Internet Security or visit http://www.cert.org/nav/recovering.html.

[2] If you doubt the need for this last test, read RFC 3093, a
 slightly tongue-in-cheek description of how to use port 80 to
 bypass a firewall.

[3] If you would like a more complete discussion of the steps
 in performance analysis, you should get Raj Jain’s exceptional
 book, The Art of Computer Systems Performance
 Analysis. Jain’s book considers performance analysis
 from a broader perspective than this book.

[4] Further distinctions between parameters and factors
 are sometimes made but don’t seem relevant when considered
 solely from the perspective of measurements.

 U
	UCD SNMP tools, SNMP-Based Management Tools–Agents and traps, Network-Monitoring Tools, Sources for Tools, Sources for Tools
		(see also NET SNMP)

	UDP (Unreliable Datagram Protocol), Path Discovery with traceroute, ttcp, iperf, Protocol and port filtering., hping, nemesis, spray, MGEN, Remote logging, NTP
		bandwidth, iperf
	filtering packets, Protocol and port filtering.
	hping tool, hping
	load generation, spray
	MGEN tool, MGEN
	nemesis tool, nemesis
	NTP usage of, NTP
	syslog use of, Remote logging
	throughput, ttcp
	traceroute tool, Path Discovery with traceroute

	unauthorized changes to systems, Need for Troubleshooting Tools
	uncompressing software tools, Generic Installs
	unformatted timestamps, Controlling how information is displayed, sanitize
	unicast packets, Web mode
	unknown transmission points, pathchar
	unmanaged hubs and switches, Mapping or Diagramming
	unpacking, Generic Installs, Solaris Packages
		software, Generic Installs
	Solaris packages, Solaris Packages

	unreachable devices or hosts, arp, Interpreting results, Path Discovery with traceroute, Path Discovery with traceroute, ICMP monitoring, SNMP Tools, Routing
		ARP tables and, arp
	checking with getif, SNMP Tools
	checking with tkined, ICMP monitoring
	ping and, Interpreting results
	routing troubleshooting, Routing
	traceroute and, Path Discovery with traceroute, Path Discovery with traceroute

	unreachable networks, Interpreting results, Path Discovery with traceroute
		ping and, Interpreting results
	traceroute and, Path Discovery with traceroute

	unresolved addresses in ARP tables, arp
	updating, queso, Web mode, Web mode
		ntop results, Web mode, Web mode
	stack fingerprint files, queso

	usage patterns, What, When, and Where
	USENIX user group, Sources of Information
	user groups, Sources of Information
	users, Legal and ethical considerations, Legal and ethical considerations, Performance Measurement Tools, ssh
		authentication, ssh
	data collection, Legal and ethical considerations
	dissatisfaction, Performance Measurement Tools
	privacy of, Legal and ethical considerations

	utilities, Utilities (see tools)
	utilization statistics (RMON), RMON

 Appendix A. Software Sources

This appendix begins with a brief discussion of retrieving and
 installing software tools. It then provides a list of potential sources
 for the software. First I describe several excellent general sources for
 tools, then I list specific sources.
 Much of this software requires root privileges and could
 contain dangerous code. Be sure you get your code from reliable sources.
 Considerable effort has been made to provide canonical sources, but no
 guarantee can be made for the trustworthiness of the code or the sources
 listed here. Most of these programs are available as FreeBSD ports or
 Linux packages. I have used them, when available, for testing for this
 book.
Installing Software

 I have not tried to describe how to install individual
 tools in this book. First, in my experience, a set of directions that is
 accurate for one version of the software may not be accurate for the
 next version. Even more likely, directions for one operating system may
 fail miserably for another. This is frequently true even for different
 versions of the same operating system. Consequently, trying to develop a
 reasonable set of directions for each tool for a variety of operating
 systems was considered unfeasible. In general, the best source of
 information, i.e., the only information that is likely to be reliable,
 is the information that comes with the software itself. Read the
 directions!
Having said this, I have tried to give some generic directions for
 installing software. At best, these are meant to augment the existing
 directions. They may help clarify matters when the included directions
 are a little too brief. These instructions are not meant as
 replacements.
Installing software has gotten much easier in the last few years,
 thanks in part to several developments. First, GNU configure and build
 tools have had a tremendous impact in erasing the differences created by
 different operating systems. Second, there have been improvements in
 file transfer and compression tools as well as increased standardization
 of the tools used. Finally, several operating systems now include
 mechanisms to automate the process. If you can use these, your life will
 be much simpler. I have briefly described three here—the Solaris package
 system, the Red Hat package manager, and the FreeBSD port system. Please
 consult the appropriate documentation for the details for each.
Generic Installs

Here is a quick review of basic steps you will go through in
 installing a program. Not every step will be needed in every case. If
 you have specific directions for a product, use those directions, not
 these! (Although slightly dated, a very comprehensive discussion can
 be found in Porting Unix Software
 by Greg Lehey.)
	Locate a reliable, trustworthy source for both the software
 and directions. Usually, the best sources are listed on a web page
 managed by the author or her organization.

	If you can locate directions before you begin, read them
 first. Typically, basic directions can be found at the software’s
 home page. Frequently, however, the most complete directions are
 included with the software distribution, so you may need to
 retrieve and unpack the software to get at these.

	Download the tool using FTP. You may be able to do this with
 your web browser. Be certain you use a binary transfer if you are
 doing this manually.

	 Uncompress the software if needed. If the filename
 ends with .tgz or .gz, use gunzip. These are the two most common
 formats, but there are other possibilities. Lehey’s book contains
 a detailed list of possibilities and appropriate tools.

	 Use tar to
 unpack the software if needed, i.e., if the filename ends with
 .tar. Typically, I use the
 -xvf options.

	Read any additional documentation that was included with the
 distribution.

	 If the file is a precompiled binary, you need only
 move it to the correct location. In general, it is safer to
 download the source code and compile it yourself. It is much
 harder to hide Trojan horses in source code (but not
 impossible).

	If you have a very simple utility, you may need to
 compile it directly. This means calling the compiler with the
 appropriate options. But for all but the simplest programs, a
 makefile should be provided. If you see a file named Makefile, you will use the make command to build the program. It
 may be necessary to customize the Makefile before you can proceed. If you
 are lucky, the distribution will include a configure script, a file that, when
 executed, will automatically make any needed changes to the
 Makefile. Look for this
 script first. If you don’t find it, look back over your directions
 for any needed changes. If you don’t find anything, examine the
 makefile for embedded directions. If all else fails, you can try
 running make without making
 any changes.

	Finally, you may also need to run make with one or more arguments to
 finish the installation, e.g., make
 install to move the files to the appropriate
 directories or make clean to
 remove unused files such as object modules after linking. Look at
 your directions, or look for comments embedded in the
 makefile.

Hopefully each of these steps will be explained in detail in the
 documentation with the software.

Solaris Packages

 In Solaris, packages are directories of the files needed
 to build or run a program. This is the mechanism Sun Microsystems uses
 to distribute software. If you are installing from a CD-ROM, the files
 will typically be laid out just the way you need them. You will only
 need to mount the CD-ROM so you can get to them. If you are
 downloading packages, you will typically need to unpack them first,
 usually with the tar command. You
 may want to do this under the default directory /var/spool/pkg, but you can override this
 location with command options when installing the package.
 Once you have the appropriate package on your system,
 you can use one of several closely related commands to manage it. To
 install a package, use the pkgadd
 command. Without any arguments, pkgadd will list the packages on your
 system and give you the opportunity to select the package of interest.
 Alternately, you can name the package you want to install. You can use
 the -d option to specify a
 different directory.
 Other commands include the pkgrm command to remove a package, the
 pkginfo command to display
 information on which packages are already installed on your system,
 and pkgchk to check the integrity
 of the package.
For other software in package format, you might begin by looking
 at http://sunfreeware.com or searching the Web
 for Sun’s university alliance software repositories. Use the string
 “sunsite” in your search.

Red Hat Package Manager

 Different versions of Linux have taken the idea of
 packages and expanded on it. Several different package formats are
 available, but the Red Hat format is probably the most common. There
 are several programs for the installation of software in the RPM
 format. Of these, the Red Hat Package Manager (rpm) is what I generally use. Two other
 package management tools that provide GUIs include glint and gnorpm.
First, download the package in question. Then, to install a
 package, call rpm with the
 options -ivh and the name of the
 package. If all goes well, that is all there is to it. You can use the
 -e option to remove a
 package.
A variety of packages come with many Linux distributions.
 Numerous sites on the Web offer extensive collections of Linux
 software in RPM format. If you are using Red Hat Linux, try http://www.redhat.com. Many of the repositories will
 provide you with a list of dependencies, which you’ll need to install
 first.

FreeBSD Ports

 Another approach to automating software installation is
 the port collection approach used by FreeBSD. This, by far, is the
 easiest approach to use and has been adapted to other systems
 including OpenBSD and Debian Linux. The FreeBSD port collection is
 basically a set of directions for installing software. Literally
 thousands of programs are available.
Software is grouped by category in subdirectories in the
 /usr/ports directory. You change
 to the appropriate directory for the program of interest and type
 make install. At that point, you sit back and
 watch the magic. The port system will attempt to locate the
 appropriate file in the /usr/ports/distfiles directory. If the file
 is not there, it will then try downloading the file from an
 appropriate site via FTP. Usually the port system knows about several
 sites so, if it can’t reach one, it will try another. Once it has the
 file, it will calculate and verify a checksum for the file. It next
 applies appropriate patches and checks dependencies. It will
 automatically install other ports as needed. Once everything is in
 place, it will compile the software. Finally, it installs the software
 and documentation. When it works, which is almost always, it is simply
 extraordinary. The port collection is an installation option with
 FreeBSD. Alternately, you can visit http://www.freebsd.org. The process is described in the
 FreeBSD Handbook.
When evaluating a new piece of software, I have the luxury of
 testing the software on several different platforms. In general, I
 find the FreeBSD port system the easiest approach to use. If I have
 trouble with a FreeBSD port, I’ll look for a Linux package next. If
 that fails, I generally go to a generic source install. In my
 experience, Solaris packages tend to be hard to find.

Generic Sources

 The Cooperative Association for Internet Data Analysis
 (CAIDA) maintains an extensive listing of measurement tools on the Web.
 The page at http://www.caida.org/tools/measurement
 has a number of tables grouping tools by function. Brief descriptions of
 each tool, including links to relevant sites, follow the tables. This
 listing includes both free and commercial tools and seems to be updated
 on a regular basis. Another CAIDA page, http://www.caida.org/tools/taxonomy/, provides a listing
 of tools by taxonomy.
 Another web site maintaining a list of network-monitoring
 tools is http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html.
 In general, there are several collaborative Internet measurement
 projects that regularly introduce or discuss measurement tools. These
 include CAIDA and the Stanford Linear Accelerator Center (SLAC), among
 others.
 Other sites that you might want to look at include those
 that develop tools, such as http://moat.nlanr.net,
 http://www-nrg.ee.lbl.gov/, and http://www.merit.edu. Don’t forget special purpose sites.
 Security sites like http://www.cert.org and http://www.ciac.org/ciac/ may have links to useful tools.
 Keep your eyes open.
Finally, several RFCs discuss tools. The most
 comprehensive is RFC 1470. Unfortunately, it is quite dated. RFC 1713,
 also somewhat dated, deals with DNS tools, and RFC 2398 deals with tools
 for testing TCP implementation.

Licenses

 Although some commercial software has been mentioned, this
 book has overwhelmingly focused on freely available software. But
 “freely available” is a very vague expression that covers a lot of
 ground.
At one extreme is software that is released without any
 restrictions whatsoever. You can use it as you see fit, modify it, and,
 in some cases, even try to sell your enhanced versions. Most of the
 software described here, however, comes with some limitations on what
 you can do with it, particularly with respect to reselling it.
Some of this software is freely available to some classes of users
 but not to others. For example, some software distinguishes between
 commercial and noncommercial users or between commercial and academic
 users. For some of the tools, binaries are available, but source code is
 either not available or requires a license. Some of the software exists
 in multiple forms. For example, there may be both free and commercial
 versions of a tool. Other tools restrict what you do with them. For
 example, you may be free to use the tool, but you may be expected to
 share any improvements you make.
You should also be aware that licensing may change over time. It
 is not uncommon for a tool to move from the free category to the
 commercial category, particularly as new, improved versions are
 released. This seems to be a fairly common business model.
I have not attempted to describe the licensing for individual
 tools. I am not a lawyer and do not fully understand all the subtleties
 of license agreements. Different licenses will apply to different
 organizations in different ways. In some cases, such as when encryption
 is involved, different countries have laws that impact licenses in
 unusual ways. Finally, license agreements change so frequently, anything
 I write could be inaccurate by the time you read this.
The bottom line, then, is that you should be sure to check
 appropriate licensing agreements whenever you retrieve any software.
 Ultimately, it is your responsibility to ensure that your use of these
 tools is permissible.

Sources for Tools

 This section gives basic information on each tool
 discussed in this book. I have not included built-in tools like
 ps. The tools are listed
 alphabetically. I have tried to make a note of which tools are specific
 to Windows, but I did not list Windows tools separately, since many
 tools are available for both Unix and Windows.
A few tools discussed in the book, particularly older tools, seem
 to have no real home but may be available in some archives. This is
 generally an indication that the tool is fading into oblivion and should
 be used as a last alternative. (Some of these tools, however, are alive
 and well as Linux packages or FreeBSD ports.) While I was writing this
 book, a number of home pages for tools changed. Also, several of the
 sites seem to be down more than they are up. I have supplied the most
 recent information I have, but many of the tools will have moved.
Tip
These URLs are nothing more than starting points. If you can’t
 find the tool at the URL given here, consider doing an Internet
 search. In fact, I really recommend doing your own search over using
 this list. I find that I have the most luck with searches if I do a
 compound search with the tool’s name and the author’s last
 name.

Warning
That one version of a tool is safe, stable, and useful doesn’t
 mean the next version won’t have severe problems. New programs are
 introduced on an almost daily basis. So keep your eyes open.

	Analyzer—Piero Viano
	This is a protocol analyzer for Windows. (Directions are
 available only in Italian.) http://netgroup-serv.polito.it/analyzer/

	argus—Carter Bullard
	This is a generic IP network transaction auditing tool.
 ftp://ftp.sei.cmu.edu/pub/argus-1.5

	arping—marvin@nss.nu
	This ping-like program
 uses ARP requests to check reachability. http://synscan.nss.nu/programs.php

	arpwatch—Lawrence
 Berkeley National Laboratory
	This tool watches for new or changed MAC addresses. ftp://ftp.ee.lbl.gov/arpwatch.tar.gz

	 AWACS—Georg
 Greve
	This is log management software currently under development.
 http://www.gnu.org/software/awacs/awacs.html

	 bb—BB4
 Technologies, Inc.
	This is web-based monitoring software. http://www.bb4.com/

	 bind—University
 of California at Berkeley and the Internet Software
 Consortium
	This is the Berkeley Internet Name Daemon, i.e., domain name
 server software. It includes a number of testing tools. http://www.isc.org/products/BIND/

	bing—Pierre
 Beyssac
	This tool measures point-to-point bandwidth. http://www.freenix.fr/freenix/logiciels/bing.html

	bluebird—Shane
 O’Donnell et al.
	This is a general network management applications framework.
 http://www.opennms.org/

	 bprobe and cprobe
	These tools measure the bandwidth at the slowest link on a
 path. ftp://cs-www.bu.edu/carter/probes.tar.Z

	cheops—Mark
 Spencer
	This is a Linux-based network management platform. http://www.marko.net/cheops/

	Chesapeake port scanner—Mentor Technologies
	This is a simple port scanner for Windows. http://www.mentortech.com/learn/tools/pscan.shtml

	 clink—Allen
 Downey
	This is another pathchar variant, a tool for measuring
 the bandwidth of links on a path. http://www.cs.colby.edu/~downey/clink/

	 CMU SNMP—Carnegie Mellon University
	This set of SNMP tools has largely been superseded by NET
 SNMP. They are still commonly available for Linux. http://www.gaertner.de/snmp/

	cpm—CERT at
 Carnegie Mellon University
	This tool checks to see if any interfaces are in promiscuous
 mode. ftp://info.cert.org/pub/tools/cpm.tar.Z

	cricket—Jeff
 Allen
	This tool queries devices, collecting information over time,
 typically router traffic, and graphs the collected information.
 http://cricket.sourceforge.net/

	 cyberkit—Luc
 Neijens
	This multipurpose Windows-based tool includes ping, traceroute, scanning, and SNMP. It is
 postcardware. http://www.cyberkit.net

	 dig
	Part of the bind
 distribution. This tool retrieves domain name information from a
 server.

	dnsquery
	Part of the bind
 distribution. This tool retrieves domain name information from a
 server.

	dnsutl—Peter
 Miller
	This is a tool to simplify DNS configuration. http://www.pcug.org.au/~millerp/dnsutl/dnsutl.html

	dnswalk—David
 Barr
	This tool retrieves and analyzes domain name information
 from a server. http://www.cis.ohio-state.edu/~barr/dnswalk/

	doc—Steve Hotz,
 Paul Mockapetris, and Brad Knowles
	This tool retrieves and analyzes domain name information
 from a server.

	dsniff—Dug Song
	This is a set of utilities that can be used to test or
 breach the security on your system. http://naughty.monkey.org/~dugsong/dsniff/

	echoping—Stéphane
 Bortzmeyer
	This is an alternative to ping that uses protocols other than
 ICMP. ftp://ftp.internatif.org/pub/unix/echoping/

	egressor—Mitre
	This tool set verifies that your router will not forward
 packets with spoofed addresses. http://www.packetfactory.net/Projects/Egressor/

	ethereal—Gerald
 Combs et al.
	This is a protocol analyzer that runs under X Window and
 Windows. It requires GTK+, which in turn requires GLIB. http://www.ethereal.com

	 fping—Roland J.
 Schemers
	This is a ping variant
 that can check multiple systems in parallel. http://www.fping.com

	fressh—FreSSH
 Organization
	This is another alternative to ssh. http://www.fressh.org/

	getif—Philippe
 Simonet
	This is a multipurpose Windows tool that uses SNMP. http://www.wtcs.org/snmp4tpc/testing.htm

	gimp
	This is an image manipulation program. It is also available
 for Windows. http://www.gimp.org/

	GTK+—Peter
 Mattis, Spencer Kimball, and Josh MacDonald
	This is a GUI development toolkit. Its libraries may be
 needed by other tools. http://www.gtk.org/

	gtkportscan—Rafael Barrero
	This is a port scanner that is written in GTK+. The last reported site was http://armageddon.splorg.org/gtkportscan/.

	GxSNMP
	This is a network management applications framework. http://www.gxsnmp.org/

	h2n
	This Perl tool translates a host table to name server file
 format. ftp://ftp.uu.net/published/oreilly/nutshell/dnsbind/dns.tar.Z

	 host
	Part of the bind
 distribution. This tool retrieves domain name information from a
 server.

	hping
	Salvatore Sanfilippo. This tool sends custom packets and
 displays responses. http://www.kyuzz.org/antirez/software.html

	iperf—Mark Gates and Alex Warshavsky
	This is a tool for measuring TCP and UDP bandwidth. http://dast.nlanr.net/Projects/Iperf/

	 ipfilter—Darren
 Reed
	This is a set of programs to filter TCP/IP packets. It
 includes ipsend, a tool to
 send custom packets. http://coombs.anu.edu.au/~avalon/ip-filter.html

	ipload—BTT
 Software
	This is a load generator for Windows. http://www.bttsoftware.co.uk/ipload.html

	ipsend—Darren Reed
	This tool is part of the ipfilter package. http://coombs.anu.edu.au/~avalon/ip-filter.html

	lamers—Bryan
 Beecher
	This tool checks for lame delegations in a DNS database. Its
 current official location is unknown. The last reported official
 site: ftp://terminator.cc.umich.edu/dns/lame-delegations.
 I found links to copies at http://www.dns.net/dnsrd/tools.html.

	logcheck—Craig
 Rowland
	This log management tool is suitable for use with syslog files. http://www.psionic.com/abacus/logcheck/

	lsof—Victor
 Abell
	This tool lists open files on a Unix system. ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/

	MGEN—Brian
 Adamson and Naval Research Laboratory
	This tool set generates and receives traffic. It is used
 primarily for load testing. http://manimac.itd.nrl.navy.mil/MGEN/

	mon—Jim
 Trocki
	This is a general purpose resource-monitoring system for
 host and service availability. http://www.kernel.org/software/mon/

	mrtg—Tobias
 Oetiker and Dave Rand
	This tool queries devices, collects information over time
 (typically router traffic) and graphs collected information.
 http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/

	 mssh—Metro State
 College of Denver
	This is a version of ssh for Windows. http://cs.mscd.edu/MSSH/index.html

	 msyslog—Core
 SDI
	This is modular syslog,
 a replacement for secure
 syslog. http://www.core-sdi.com/english/freesoft.html

	nam—Steven
 McCanne and VINT
	This is a Tcl/Tk-based network
 visualization and animation tool. http://www.isi.edu/nsnam/nam/

	nemesis—
 obecian@celerity.bartoli.org
	This tool generates a wide variety of custom IP packets.
 http://www.packetninja.net/nemesis/

	nessus—Jordan
 Hrycij and Renaud Deraison
	This is a security scanning and auditing tool. http://www.nessus.org/

	 NET SNMP—Wes
 Hardaker
	This is an updated version of CMU SNMP. It is postcardware.
 http://net-snmp.sourceforge.net/

	netcat—
 hobbit@avian.org
	This simple utility reads and writes data across network
 connections. It is available for both Unix and Windows. http://www.l0pht.com/~weld/netcat/

	netmon
	Supplied with Microsoft NT Server. This is
 network-monitoring software. A basic, stripped-down version of the
 netmon.exe program is supplied with Microsoft NT Server. The full
 version is part of Microsoft’s System Management Server.

	netperf—Hewlett-Packard
	This is network benchmarking and performance measurement
 software. http://www.netperf.org/netperf/NetperfPage.html

	nfswatch—Dave
 Curry and Jeff Mogul
	This is a tool for watching NFS traffic. The last known site
 was ftp://ftp.cerias/purdue.edu/pub/tools/unix/netutils/nfswatch/.

	nhfsstone—Legato
 Systems
	This is a tool for benchmarking NFS traffic. Current
 availability is unknown, but it was originally from http://www.legato.com.

	NIST Net—National
 Institute of Standards and Technology
	This is a network emulation package that runs on Linux.
 http://is2.antd.nist.gov/itg/nistnet/

	nmap—
 fyodor@dhp.com
	This is a general scanning and probing tool with lots of
 functionality including OS fingerprinting. http://www.insecure.org/nmap

	nocol—Netplex
 Technologies, Inc.
	This is system- and network-monitoring software. http://www.netplex-tech.com/software/nocol/

	ns—Steven
 McCanne, Sally Floyd, and VINT
	This is a network simulator for protocol performance and
 scaling. http://www.isi.edu/nsnam/ns/

	 nslookup
	Part of the bind
 distribution. This tool retrieves domain name information from a
 server.

	ntop—Luca
 Deri
	This is a versatile tool for monitoring network usage.
 http://www.ntop.org/ntop.html

	ntpd—David
 Mills
	This is a collection of tools to set and coordinate system
 clocks using NTP. http://www.eecis.udel.edu/~ntp/

	 openssh
	This is another version of ssh. http://www.openssh.com/

	p0f—Michal
 Zalewski
	This is a passive stack fingerprinting system. http://lcamtuf.hack.pl/p0f-1.7.tgz

	pathchar—Van
 Jacobson
	This program measures the bandwidth of the links along a
 network path. ftp://ftp.ee.lbl.gov/ or
 http://ee.lbl.gov/

	pchar—Bruce
 Mah
	This tool is a reimplementation of pathchar. http://www.employees.org/~bmah/Software/pchar/

	portscan—Tennessee Carmel-Veilleux
	This is a simple port scanner. http://www.ameth.org/~veilleux/portscan.html

	putty—Simon
 Tatham
	This is a Windows implementation of ssh. http://www.chiark.greenend.org.uk/~sgtatham/putty/

	Qcheck—Ganymede
	This is a Windows network benchmarking tool. http://www.qcheck.net

	queso—
 savage@apostols.org
	This is an OS fingerprinting tool. http://savage.apostols.org/projects.html

	 ripquery
	Part of the gated
 distribution. This tool retrieves the routing table from a system
 running RIP. http://www.gated.org/

	rrd—Tobias
 Oetiker
	This is a round-robin database system useful for collecting
 and archiving data over time. http://ee-staff.ethz.ch/~oetiker/webtools/rrdtool/

	 rtquery
	Part of the routed
 distribution. This is a tool for retrieving the routing table from
 a system running RIP.

	samspade—Steve
 Atkins
	This is a multipurpose Windows tool with a wide range of
 features. http://samspade.org/ssw/

	Sanitize—Vern
 Paxson
	This is a set of Bourne scripts that use the standard Unix
 utilities sed and awk. It is used to clean up tcpdump traces to ensure privacy.
 http://ita.ee.lbl.gov/html/contrib/sanitize.html

	 scion—Merit
 Networks, Inc.
	This is network statistics collection and reporting software
 (also called NetSCARF.) It is also available
 for Windows. http://www.merit.edu/internet/net-research/netscarf/

	scotty—Jürgen
 Schönwälder
	This provides network management extension to the
 Tcl/Tk language. http://wwwhome.cs.utwente.nl/~schoenw/scotty/

	SFS—SPEC
	This is a commercial (but nonprofit) NFS benchmark. http://www.spec.org

	siphon—Subterrain
 Security Group
	This is a passive OS fingerprinter. The last known site was
 http://www.subterrain.net/projects/siphon/.

	sl4nt—Franz
 Krainer
	This is a Windows replacement for syslogd. http://www.netal.com/SL4NT03.htm

	 SNMP for Perl 5—Simon Leinen
	This is a package of Perl 5 modules providing SNMP support.
 http://www.switch.ch/misc/leinen/snmp/perl/

	sock—W. Richard
 Stevens
	This is a tool for generating traffic. It is a companion
 tool for Steven’s book, TCP/IP Illustrated,
 vol. 1, The Protocols. ftp://ftp.uu.net/published/books/stevens.tcpipiv1.tar.Z

	socket—Juergen
 Nickelsen
	This program creates a TCP socket connected to stdin and stdout. http://home.snafu.de/jn/socket/

	spidermap—H. D.
 Moore
	This is a set of Perl scripts for network scanning. http://www.secureaustin.com

	spray
	This tool sends a burst of packets for load testing
 typically included with many systems.

	ssh—Tatu
 Ylönen
	This is a secure replacement for r-services. http://www.ssh.com/

	ssyslog—Core
 SDI
	This is a secure replacement for syslog. It has been replaced by
 modular syslog. http://www.core-sdi.com/english/freesoft.html

	strobe—Julian
 Assange
	This program locates all listening TCP ports on a remote
 machine. The last known official site was ftp://suburbia.net/pub/strobe.tgz.

	swatch—Todd
 Atkins
	This log management tool is suitable for use with syslog files. http://www.stanford.edu/~atkins/swatch/

	 syslog-ng—BalaBit IT Ltd.
	This is an enhanced syslog that features filtering and
 sorting logs to different destinations. http://www.balabit.hu/en/products/syslog-ng/

	Tcl/Tk—John
 Ousterhout
	This is a general scripting language that has been extended
 to support many network management tasks. http://dev.scriptics.com

	tcpdpriv—Greg
 Minshall
	This program sanitizes tcpdump trace files. http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html

	tcpdump—Van
 Jacobson, Craig Leres, and Steven McCanne
	This is command-line-based packet capture program. http://ee.lbl.gov/, http://www.tcpdump.org, or ftp://ftp.ee.lbl.gov/tcpdump.tar.Z

	tcpflow—Jeremy
 Elson
	This is a capture program that separates traffic into
 individual flows. http://www.circlemud.org/~jelson/software/tcpflow

	tcp-reduce—Vern
 Paxson
	The program tcp-reduce
 and its companion program tcp-summary are Bourne shell scripts
 used to selectively extract information from tcpdump trace files. http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html

	tcpshow—Mike Ryan
	This program reads and decodes tcpdump files. The official home for
 this is unknown, but it is available in several archives such as
 http://www.cerias.purdue.edu/coast/archive/.

	tcpslice—Vern
 Paxson
	This tool is used to create subsets of tcpdump trace files. ftp://ftp.ee.lbl.gov/tcpslice.tar.Z or http://www.tcpdump.org/related.html

	tcp-summary—Vern
 Paxson
	The program tcp-reduce
 and its companion program tcp-reduce are Bourne shell scripts
 used to selectively extract information from tcpdump trace files. http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html

	tcptrace—Shawn Ostermann
	This is a tcpdump trace
 analysis program. http://www.tcptrace.org

	tcpwrappers—Wietse Venema
	This daemon sits between user and services to log and manage
 connections. ftp://ftp.porcupine.org/pub/security/index.html

	teraterm—T.
 Teranishi
	This is a Windows telnet client that can be extended to
 support SSH. (See also TTSSH.) http://hp.vector.co.jp/authors/VA002416/teraterm.html

	tjping—Top Jimmy
	This is a ping and
 traceroute program for
 Windows. http://www.topjimmy.net/tjs/

	tkined—Jürgen
 Schönwälder
	This provides a network management program based on
 scotty and
 Tcl/Tk. http://wwwhome.cs.utwente.nl/~schoenw/scotty/

	tmetric—Michael
 Bacarella
	This tool finds available bandwidth. http://netgraft.com/downloads/tmetric/

	top—William LeFebvre
	This displays the most active processes on a system. http://www.groupsys.com/top/about.html

	traceroute—Van
 Jacobson
	This reconstructs the route taken by packets over a network.
 It is probably supplied with your system. ftp://ftp.ee.lbl.gov/ or http://ee.lbl.gov/

	trafshow—Vladimir
 Vorobyev
	This full screen traffic capture program gives a continuous
 update on network traffic. Its last reported site was http://www.rinetsoft.nsk.su/trafshow/index_en.html.

	trayping—Mike
 Gleason
	This is a Windows tool that monitors connectivity using
 ping. http://www.ncftpd.com/winstuff/trayping/

	treno—Matt Mathis
	This is a tool to measure the bulk transfer capacity. ftp://ftp.psc.edu/pub/net_tools/

	tripwire—Eugene Spafford and Gene Kim
	This is a system integrity checker. http://www.tripwire.com or http://www.tripwire.org

	ttcp—Mike
 Muuss
	This is a load testing program for TCP. ftp://ftp.arl.mil/pub/ttcp/ttcp.c

	 TTSSH
	This is a set of SSH extensions for Windows telnet program,
 teraterm. http://www.zip.com.au/~roca/ttssh.html

	vnc—AT&T
 Laboratories, Cambridge
	This tool displays X Window and Windows desktops on remote
 systems. http://www.uk.research.att.com/vnc/

	 WinDump and WinDump95—Loris Degioanni, Piero Viano,
 and Fulvio Risso
	These are ports of
 tcpdump to Windows NT and Windows 95/98. http://netgroup-serv.polito.it/windump/

	winping—Rich
 Morgan
	This is another ping
 utility for Windows. http://www.cheap-price.com/winping/

	xinetd—Panos
 Tsirigotis
	This is a secure replacement for the inetd utility. http://www.synack.net/xinetd/

	xlogmaster—Georg
 Greve
	This is Greve’s older log management software. You may want
 to check on the status of AWACS before using it. http://www.gnu.org/software/xlogmaster/

	xplot—David
 Clark
	A tool for graphing data in an X Window environment. There
 are several programs with this name, so be sure you have the right
 one. ftp://mercury.lcs.mit.edu/pub/shep/

	xv—John
 Bradley
	This is a modestly priced shareware program for the
 interactive display of images from an X Window system. You should
 probably try gimp first.
 ftp://ftp.cis.upenn.edu/pub/xv

 Z
	zeroing ntop statistics, Interactive mode, Web mode
	zone authority records, nslookup and dig, nslookup and dig
	zone transfers, doc, dnswalk, and lamers

 Chapter 5. Packet Capture

 Packet capture and analysis is the most powerful technique
 that will be discussed in this book—it is the ultimate troubleshooting
 tool. If you really want to know what is happening on your network, you
 will need to capture traffic. No other tool provides more
 information.
 On the other hand, no other tool requires the same degree of
 sophistication to use. If misused, it can compromise your system’s
 security and invade the privacy of your users. Of the software described
 in this book, packet capture software is the most difficult to use to its
 full potential and requires a thorough understanding of the underlying
 protocols to be used effectively. As noted in Chapter 1, you must ensure that
 what you do conforms to your organization’s policies and any applicable
 laws. You should also be aware of the ethical implications of your
 actions.
This chapter begins with a discussion of the type of tools available
 and various issues involved in traffic capture. Next I describe tcpdump, a ubiquitous and powerful packet
 capture tool. This is followed by a brief description of other closely
 related tools. Next is a discussion of ethereal, a powerful protocol analyzer that is
 rapidly gaining popularity. Next I describe some of the problems created
 by traffic capture. The chapter concludes with a discussion of packet
 capture tools available for use with Microsoft Windows platforms.
Traffic Capture Tools

 Packet capture is the real-time
 collection of data as it travels over networks. Tools for the capture
 and analysis of traffic go by a number of names including
 packet sniffers, packet
 analyzers, protocol analyzers, and even
 traffic monitors. Although there is some
 inconsistency in how these terms are used, the primary difference is in
 how much analysis or interpretation is provided after a packet is
 captured. Packet sniffers generally do the least amount of analysis,
 while protocol analyzers provide the greatest level of interpretation.
 Packet analyzers typically lie somewhere in between. All have the
 capture of raw data as a core function. Traffic monitors typically are
 more concerned with collecting statistical information, but many support
 the capture of raw data. Any of these may be augmented with additional
 functions such as graphing utilities and traffic generators. This
 chapter describes tcpdump, a packet
 sniffer, several analysis tools, and ethereal, a protocol analyzer.
 While packet capture might seem like a low-level tool, it
 can also be used to examine what is happening at higher levels,
 including the application level, because of the way data is
 encapsulated. Since application data is encapsulated in a generally
 transparent way by the lower levels of the protocol stack, the data is
 basically intact when examined at a lower level.[1] By examining network traffic, we can examine the data
 generated at the higher levels. (In general, however, it is usually much
 easier to debug an application using a tool designed for that
 application. Tools specific to several application-level protocols are
 described in Chapter
 10.)
Packet capture programs also require the most technical
 expertise of any program we will examine. A thorough understanding of
 the underlying protocol is often required to interpret the results. For
 this reason alone, packet capture is a tool that you want to become
 familiar with well before you need it. When you are having problems, it
 will also be helpful to have comparison systems so you can observe
 normal behavior. The time to learn how your system works is before you
 have problems. This technique cannot be stressed enough—do a baseline
 run for your network periodically and analyze it closely so you know
 what traffic you expect to see on your network before you have
 problems.

Access to Traffic

 You can capture traffic only on a link that you have
 access to. If you can’t get traffic to an interface, you can’t capture
 it with that interface. While this might seem obvious, it may be
 surprisingly difficult to get access to some links on your network. On
 some networks, this won’t be a problem. For example, 10Base2 and 10Base5
 networks have shared media, at least between bridges and switches.
 Computers connected to a hub are effectively on a shared medium, and the
 traffic is exposed. But on other systems, watch out!
 Clearly, if you are trying to capture traffic from a host
 on one network, it will never see the local traffic on a different
 network. But the problem doesn’t stop there. Some networking devices,
 such as bridges and switches, are designed to contain traffic so that it
 is seen only by parts of the local network. On a switched network, only
 a limited amount of traffic will normally be seen at any
 interface.[2] Traffic will be limited to traffic to or from the host or
 to multicast and broadcast traffic. If this includes the traffic you are
 interested in, so much the better. But if you are looking at general
 network traffic, you will use other approaches.
 Not being able to capture data on an interface has both
 positive and negative ramifications. The primary benefit is that it is
 possible to control access to traffic with an appropriate network
 design. By segmenting your network, you can limit access to data,
 improving security and enhancing privacy.
Lack of access to data can become a serious problem,
 however, when you must capture that traffic. There are several basic
 approaches to overcome this problem. First, you can try to physically go
 to the traffic by using a portable computer to collect the data. This
 has the obvious disadvantage of requiring that you travel to the site.
 This may not be desirable or possible. For example, if you are
 addressing a security problem, it may not be feasible to monitor at the
 source of the suspected attack without revealing what you are doing. If
 you need to collect data at multiple points simultaneously, being at
 different places at the same time is clearly not possible by
 yourself.
 Another approach is to have multiple probe computers
 located throughout your network. For example, if you have computers on
 your network that you can reach using telnet, ssh, X Window software, or vnc, you can install the appropriate software
 on each. Some software has been designed with remote probing in mind.
 For example, Microsoft’s netmon
 supports the use of a Windows platform as a probe for collecting
 traffic. Data from the agents on these machines can be collected by a
 central management station. Some RMON probes will also do this.
 (vnc and ssh are described in Chapter 11. netmon is briefly described later in this
 chapter, and RMON is described in Chapter 8.)
When dealing with switches, there are two common
 approaches you can take. (Several other techniques that I can’t
 recommend are described later in this chapter.) One approach is to
 augment the switch with a spare hub. Attach the hub to the switch and
 move from the switch to the hub only the connections that need to be
 examined. You could try replacing the switch with a hub, but this can be
 disruptive and, since a hub inherently has a lower capacity, you may
 have more traffic than the hub can handle. Augmenting the switch with a
 hub is a better solution.
 Buying a small portable hub to use in establishing a probe
 point into your network is certainly worth the expense. Because you will
 be connecting a hub to a switch, you will be using both crossover and
 patch cables. Be sure you work out the details of the cabling well
 before you have to try this approach on a problematic network.
 Alternately, there are several commercially available devices designed
 specifically for patching into networks. These devices include
 monitoring switches, fiber splitters, and devices designed to patch into
 100-Mbps links or links with special protocols. If your hardware
 dictates such a need, these devices are worth looking into.
Tip
 Here is a riddle for you—when is a hub not a hub? In
 recent years, the distinction between hubs and switches has become
 blurred. For example, a 10/100 autoswitching hub may be implemented,
 internally, as a 10-Mbps hub and a 100-Mbps hub connected by a
 dual-port switch. With such a device, you may not be able to see all
 the traffic. In the next few years, true hubs may disappear from the
 market. You may want to keep this in mind when looking for a hub for
 traffic monitoring.

 A second possibility with some switches is to duplicate
 the traffic from one port onto another port. If your switch supports
 this, it can be reconfigured dynamically to copy traffic to a monitoring
 port. Other ports continue functioning normally so the monitoring
 appears transparent to the rest of the switch’s operation. This
 technique is known by a variety of names. With Bay Network products,
 this is known as conversation steering. Cisco
 refers to this as monitoring or
 using a spanning port. Other names
 include port aliasing and port mirroring.
Unfortunately, many switches either don’t support this behavior or
 place limitations on what can be done. For instance, some switches will
 allow traffic to be redirected only to a high-speed port. Implementation
 details determining exactly what can be examined vary greatly. Another
 problem is that some types of errors will be filtered by the switch,
 concealing possible problems. For example, if there are any framing
 errors, these will typically be discarded rather than forwarded.
 Normally, discarding these packets is exactly what you want the switch
 to do, just not in this context. You’ll have to consult the
 documentation with your switch to see what is possible.

Capturing Data

 Packet capture may be done by software running on a
 networked host or by hardware/software combinations designed
 specifically for that purpose. Devices designed specifically for
 capturing traffic often have high-performance interfaces that can
 capture large amounts of data without loss. These devices will also
 capture frames with framing errors—frames that are often silently
 discarded with more conventional interfaces. More conventional
 interfaces may not be able to keep up with high traffic levels so
 packets will be lost. Programs like tcpdump give summary statistics, reporting
 the number of packets lost. On moderately loaded networks, however,
 losing packets should not be a problem. If dropping packets becomes a
 problem, you will need to consider faster hardware or, better yet,
 segmenting your network.
 Packet capture software works by placing the network
 interface in promiscuous mode.[3] In normal operations, the network interface captures and
 passes on to the protocol stack only those packets with the interface’s
 unicast address, packets sent to a multicast address that matches a
 configured address for the interface, or broadcast packets. In
 promiscuous mode, all packets are captured regardless of their
 destination address.
While the vast majority of interfaces can be placed in promiscuous
 mode, a few are manufactured not to allow this. If in doubt, consult the
 documentation for your interface. Additionally, on Unix systems, the
 operating system software must be configured to allow promiscuous mode.
 Typically, placing an interface in promiscuous mode requires root
 privileges.

tcpdump

 The tcpdump program
 was developed at the Lawrence Berkeley Laboratory at the University of
 California, Berkeley, by Van Jacobson, Craig Leres, and Steven McCanne.
 It was originally developed to analyze TCP/IP performance problems. A
 number of features have been added over time although some options may
 not be available with every implementation. The program has been ported
 to a wide variety of systems and comes preinstalled on many
 systems.
 For a variety of reasons, tcpdump is an ideal tool to begin with. It is
 freely available, runs on many Unix platforms, and has even been ported
 to Microsoft Windows. Features of its syntax and its file format have
 been used or supported by a large number of subsequent programs. In
 particular, its capture software, libpcap, is frequently used by other capture
 programs. Even when proprietary programs with additional features exist,
 the universality of tcpdump makes
 it a compelling choice. If you work with a wide variety of platforms,
 being able to use the same program on all or most of the platforms can
 easily outweigh small advantages proprietary programs might have. This
 is particularly true if you use the programs on an irregular basis or
 don’t otherwise have time to fully master them. It is better to know a
 single program well than several programs superficially. In such
 situations, special features of other programs will likely go
 unused.
Since tcpdump is text
 based, it is easy to run remotely using a Telnet connection. Its biggest
 disadvantage is a lack of analysis, but you can easily capture traffic,
 move it to your local machine, and analyze it with a tool like ethereal. Typically, I use tcpdump in text-only environments or on
 remote computers. I use ethereal in
 a Microsoft Windows or X Window environment and to analyze tcpdump files.
Using tcpdump

The simplest way to run tcpdump is interactively by simply typing
 the program’s name. The output will appear on your screen. You can
 terminate the program by typing Ctrl-C. But unless you have an idle
 network, you are likely to be overwhelmed by the amount of traffic you
 capture. What you are interested in will likely scroll off your screen
 before you have a chance to read it.
Fortunately, there are better ways to run tcpdump. The first question is how you plan
 to use tcpdump. Issues include
 whether you also plan to use the host on which tcpdump is running to generate traffic in
 addition to capturing traffic, how much traffic you expect to capture,
 and how you will determine that the traffic you need has been
 captured.
 There are several very simple, standard ways around the
 problem of being overwhelmed by data. The Unix commands tee and script are commonly used to allow a user to
 both view and record output from a Unix session. (Both tee and script are described in Chapter 11.) For example,
 script could be started,
 tcpdump run, and script stopped to leave a file that could
 be examined later.
The tee command is
 slightly more complicated since tcpdump must be placed in line mode to
 display output with tee. This is
 done with the -l option. The
 syntax for capturing a file with tee is:
bsd1# tcpdump -l | tee outfile
Of course, additional arguments would probably be used.
 Using multiple Telnet connections to a host or multiple
 windows in an X Window session allows you to record in one window
 while taking actions to generate traffic in another window. This
 approach can be very helpful in some circumstances.
An alternative is to use telnet to connect to the probe computer.
 The session could be logged with many of the versions of telnet that are available. Be aware,
 however, that the Telnet connection will generate considerable traffic
 that may become part of your log file unless you are using filtering.
 (Filtering, which is discussed later in this chapter, allows you to
 specify the type of traffic you want to examine.) The additional
 traffic may also overload the connection, resulting in lost
 packets.
Another alternative is to run tcpdump as a detached process by including
 an & at the end of the
 command line. Here is an example:
bsd1# tcpdump -w outfile &
[1] 70260
bsd1# tcpdump: listening on xl0
The command starts tcpdump,
 prints a process number, and returns the user prompt along with a
 message that tcpdump has started.
 You can now enter commands to generate the traffic you are interested
 in. (You really have a prompt at this point; the message from
 tcpdump just obscures it.) Once
 you have generated the traffic of interest, you can terminate
 tcpdump by issuing a kill command using the process number
 reported when tcpdump was
 started. (You can use the ps
 command if you have forgotten the process number.)
bsd1# kill 70260
153 packets received by filter
0 packets dropped by kernel
[1] Done tcpdump -w outfile
 You can now analyze the capture file. (Running tcpdump as a detached process can also be
 useful when you are trying to capture traffic that might not show up
 for a while, e.g., RADIUS or DNS exchanges. You might want to use the
 nohup command to run it in the
 background.)
 Yet another approach is to use the -w option to write the captured data
 directly to a file. This option has the advantage of collecting raw
 data in binary format. The data can then be replayed with tcpdump using the -r option. The binary format decreases the
 amount of storage needed, and different filters can be applied to the
 file without having to recapture the traffic. Using previously
 captured traffic is an excellent way of fine-tuning filters to be sure
 they work as you expect. Of course, you can selectively analyze data
 captured as text files in Unix by using the many tools Unix provides,
 but you can’t use tcpdump
 filtering on text files. And you can always generate a text file from
 a tcpdump file for subsequent
 analysis with Unix tools by simply redirecting the output. To capture
 data you might type:
bsd1# tcpdump -w rawfile
The data could be converted to a text file with:
bsd1# tcpdump -r rawfile > textfile
This approach has several limitations. Because the data is being
 written directly to a file, you must know when to terminate recording
 without actually seeing the traffic. Also, if you limit what is
 captured with the original run, the data you exclude is lost. For
 these reasons, you will probably want to be very liberal in what you
 capture, offsetting some of the storage gains of the binary format.
 Clearly, each approach has its combination of advantages and
 disadvantages. If you use tcpdump
 very much, you will probably need each from time to time.

tcpdump Options

A number of command-line options are available with
 tcpdump. Roughly speaking,
 options can be separated into four broad categories—commands that
 control the program operations (excluding filtering), commands that
 control how data is displayed, commands that control what data is
 displayed, and filtering commands. We will consider each category in
 turn.
Controlling program behavior

 This class of command-line options affects program
 behavior, including the way data is collected. We have already seen
 two examples of control commands, -r and -w. The -w option allows us to redirect output to
 a file for later analysis, which can be extremely helpful if you are
 not sure exactly how you want to analyze your data. You can
 subsequently play back capture data using the -r option. You can repeatedly apply
 different display options or filters to the data until you have
 found exactly the information you want. These options are extremely
 helpful in learning to use tcpdump and are essential for
 documentation and sharing.
If you know how many packets you want to capture or if
 you just have an upper limit on the number of packets, the -c option allows you to specify that
 number. The program will terminate automatically when that number is
 reached, eliminating the need to use a kill command or Ctrl-C. In the next
 example, tcpdump will terminate
 after 100 packets are collected:
bsd1# tcpdump -c100
While limiting packet capture can be useful in some
 circumstances, it is generally difficult to predict accurately how
 many packets need to be collected.
 If you are running tcpdump on a host with more than one
 network interface, you can specify which interface you want to use
 with the -i option. Use the
 command ifconfig -a to discover
 what interfaces are available and what networks they correspond to
 if you aren’t sure. For example, suppose you are using a computer
 with two class C interfaces, xl0 with an IP address of 205.153.63.238 and xl1 with an IP address of 205.153.61.178. Then, to capture traffic
 on the 205.153.61.0 network,
 you would use the command:
bsd1# tcpdump -i xl1
Without an explicitly identified interface, tcpdump defaults to the lowest numbered
 interface.
 The -p option
 says that the interface should not be put into promiscuous mode.
 This option would, in theory, limit capture to the normal traffic on
 the interface—traffic to or from the host, multicast traffic, and
 broadcast traffic. In practice, the interface might be in
 promiscuous mode for some other reason. In this event, -p will not turn promiscuous mode
 off.
 Finally, -s
 controls the amount of data captured. Normally, tcpdump defaults to some maximum byte
 count and will only capture up to that number of bytes from
 individual packets. The actual number of bytes depends on the
 pseudodevice driver used by the operating system. The default is
 selected to capture appropriate headers, but not to collect packet
 data unnecessarily. By limiting the number of bytes collected,
 privacy can be improved. Limiting the number of bytes collected also
 decreases processing and buffering requirements.
If you need to collect more data, the -s option can be used to specify the
 number of bytes to collect. If you are dropping packets and can get
 by with fewer bytes, -s can be
 used to decrease the number of bytes collected. The following
 command will collect the entire packet if its length is less than or
 equal to 200 bytes:
bsd1# tcpdump -s200
 Longer packets will be truncated to 200 bytes.
If you are capturing files using the -w option, you should be aware that the
 number of bytes collected will be what is specified by the -s option at the time of capture. The
 -s option does not apply to
 files read back with the -r
 option. Whatever you captured is what you have. If it was too few
 bytes, then you will have to recapture the data.

Controlling how information is displayed

 The -a, -n, -N, and -f options determine how address
 information is displayed. The -a option attempts to force network
 addresses into names, the -n
 option prevents the conversion of addresses into names, the
 -N option prevents domain name
 qualification, and the -f
 option prevents remote name resolution. In the following, the remote
 site www.cisco.com (192.31.7.130) is pinged from sloan.lander.edu (205.153.63.30) without an option, with
 -a, with -n, with -N, and with -f, respectively. (The options -c1 host 192.31.7.130 restricts capture
 to one packet to or from the host 192.31.7.130.)
bsd1# tcpdump -c1 host 192.31.7.130
tcpdump: listening on xl0
14:16:35.897342 sloan.lander.edu > cio-sys.cisco.com: icmp: echo request
bsd1# tcpdump -c1 -a host 192.31.7.130
tcpdump: listening on xl0
14:16:14.567917 sloan.lander.edu > cio-sys.cisco.com: icmp: echo request
bsd1# tcpdump -c1 -n host 192.31.7.130
tcpdump: listening on xl0
14:17:09.737597 205.153.63.30 > 192.31.7.130: icmp: echo request
bsd1# tcpdump -c1 -N host 192.31.7.130
tcpdump: listening on xl0
14:17:28.891045 sloan > cio-sys: icmp: echo request
bsd1# tcpdump -c1 -f host 192.31.7.130
tcpdump: listening on xl0
14:17:49.274907 sloan.lander.edu > 192.31.7.130: icmp: echo request
Clearly, the -a option is
 the default.
Not using name resolution can eliminate the overhead and
 produce terser output. If the network is broken, you may not be able
 to reach your name server and will find yourself with long delays,
 while name resolution times out. Finally, if you are running
 tcpdump interactively, name
 resolution will create more traffic that will have to be filtered
 out.
 The -t and
 -tt options control the
 printing of timestamps. The -t
 option suppresses the display of the timestamp while -tt produces unformatted timestamps. The
 following shows the output for the same packet using tcpdump without an option, with the
 -t option, and with the
 -tt option,
 respectively:
12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF)

sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394 win 8647 (DF)

934303014.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF)
The -t option produces a
 more terse output while the -tt
 output can simplify subsequent processing, particularly if you are
 writing scripts to process the data.

Controlling what’s displayed

 The verbose modes provided by -v and -vv options can be used to print some
 additional information. For example, the -v option will print TTL fields. For less
 information, use the -q, or
 quiet, option. Here is the output for the same packet presented with
 the -q option, without options,
 with the -v option, and with
 the -vv option,
 respectively:
12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: tcp 0 (DF)

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF)

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF) (ttl 128, id 45836)

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF) (ttl 128, id 45836)
This additional information might be useful in a few limited
 contexts, while the quiet mode provides shorter output lines. In
 this instance, there was no difference between the results with
 -v and -vv, but this isn’t always the
 case.
The -e option is
 used to display link-level header information. For the packet from
 the previous example, with the -e
 option, the output is:
12:36:54.772066 0:10:5a:a1:e9:8 0:10:5a:e3:37:c ip 60:
sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394 win 8647 (DF)
0:10:5a:a1:e9:8 is the
 Ethernet address of the 3Com card in sloan.lander.edu, while 0:10:5a:e3:37:c is the Ethernet address
 of the 3Com card in 205.153.63.238. (We can discover the
 types of adapters used by looking up the OUI portion of these
 addresses, as described in Chapter 2.)
 For the masochist who wants to decode packets
 manually, the -x option
 provides a hexadecimal dump of packets, excluding link-level
 headers. A packet displayed with the -x and -vv options looks like this:
13:57:12.719718 bsd1.lander.edu.1657 > 205.153.60.5.domain: 11587+ A? www.
microsoft.com. (35) (ttl 64, id 41353)
 4500 003f a189 0000 4011 c43a cd99 3db2
 cd99 3c05 0679 0035 002b 06d9 2d43 0100
 0001 0000 0000 0000 0377 7777 096d 6963
 726f 736f 6674 0363 6f6d 0000 0100 01
Please note that the amount of information displayed will
 depend on how many bytes are collected, as determined by the
 -s option. Such hex listings
 are typical of what might be seen with many capture programs.
Describing how to do such an analysis in detail is beyond the
 scope of this book, as it requires a detailed understanding of the
 structure of packets for a variety of protocols. Interpreting this
 data is a matter of taking packets apart byte by byte or even bit by
 bit, realizing that the interpretation of the results at one step
 may determine how the next steps will be done. For header formats,
 you can look to the appropriate RFC or in any number of books. Table 5-1 summarizes
 the analysis for this particular packet, but every packet is
 different. This particular packet was a DNS lookup for www.microsoft.com. (For more information
 on decoding packets, see Eric A. Hall’s Internet Core
 Protocols: The Definitive Guide.)
Table 5-1. Packet analysis summary
	Raw data in hex
	Interpretation

	 IP header

	
	First 4 bits of 45
	IP version—4

	Last 4 bits of 45
	Length of header multiplier—5 (times 4 or 20
 bytes)

	00
	Type of service

	00 3f
	Packet length in hex—63 bytes

	a1 89
	ID

	First 3 bits of 00
	000—flags, none set

	Last 13 bits of 00 00
	Fragmentation offset

	40
	TTL—64 hops

	11
	Protocol number in hex—UDP

	c4 3a
	Header checksum

	cd 99 3d b2
	Source IP—205.153.61.178

	cd 99 3c 05
	Destination IP—205.153.60.5

	 UDP header

	
	06 79
	Source port

	00 35
	Destination port—DNS

	00 2b
	UDP packet length—43 bytes

	06 d9
	Header checksum

	 DNS message

	
	2d 43
	ID

	01 00
	Flags—query with recursion
 desired

	00 01
	Number of queries

	00 00
	Number of answers

	00 00
	Number of authority RRs

	00 00
	Number of additional RRs

	 Query

	
	03
	Length—3

	77 77 77
	String—“www”

	09
	Length—9

	6d 69 63 72 6f 73 6f 66 74
	String—“microsoft”

	03
	Length—3

	63 6f 6d
	String—“com”

	00
	Length—0

	00 01
	Query type—IP address

	00 01
	Query class—Internet

 This analysis was included here primarily to give a
 better idea of how packet analysis works. Several programs that
 analyze packet data from a tcpdump trace file are described later in
 this chapter. Unix utilities like strings, od, and hexdump can also make the process easier.
 For example, in the following example, this makes it easier to pick
 out www.microsoft.com in the data:
bsd1# hexdump -C tracefile
00000000 d4 c3 b2 a1 02 00 04 00 00 00 00 00 00 00 00 00 |................|
00000010 c8 00 00 00 01 00 00 00 78 19 06 38 66 fb 0a 00 |........x..8f...|
00000020 4d 00 00 00 4d 00 00 00 00 00 a2 c6 0e 43 00 60 |M...M........C.`|
00000030 97 92 4a 7b 08 00 45 00 00 3f a1 89 00 00 40 11 |..J{..E..?....@.|
00000040 c4 3a cd 99 3d b2 cd 99 3c 05 06 79 00 35 00 2b |.:..=...<..y.5.+|
00000050 06 d9 2d 43 01 00 00 01 00 00 00 00 00 00 03 77 |..-C...........w|
00000060 77 77 09 6d 69 63 72 6f 73 6f 66 74 03 63 6f 6d |ww.microsoft.com|
00000070 00 00 01 00 01 |.....|
00000075
The -vv option could also
 be used to get as much information as possible.
 Hopefully, you will have little need for the -x option. But occasionally you may
 encounter a packet that is unknown to tcpdump, and you have no choice. For
 example, some of the switches on my local network use a proprietary
 implementation of a spanning tree protocol to implement virtual
 local area networks (VLANs). Most packet analyzers, including
 tcpdump, won’t recognize these.
 Fortunately, once you have decoded one unusual packet, you can
 usually easily identify similar packets.

Filtering

 To effectively use tcpdump, it is necessary to master the
 use of filters. Filters permit you to specify what traffic you want
 to capture, allowing you to focus on just what is of interest. This
 can be absolutely essential if you need to extract a small amount of
 traffic from a massive trace file. Moreover, tools like ethereal use the tcpdump filter syntax for capturing
 traffic, so you’ll want to learn the syntax if you plan to use these
 tools.
 If you are absolutely certain that you are not
 interested in some kinds of traffic, you can exclude traffic as you
 capture. If you are unclear of what traffic you want, you can
 collect the raw data to a file and apply the filters as you read
 back the file. In practice, you will often alternate between these
 two approaches.
 Filters at their simplest are keywords added to the
 end of the command line. However, extremely complex commands can be
 constructed using logical and relational operators. In the latter
 case, it is usually better to save the filter to a file and use the
 -F option. For example, if
 testfilter is a text file
 containing the filter host
 205.153.63.30, then typing tcpdump -Ftestfilter is equivalent to
 typing the command tcpdump host 205.153.63.30.
 Generally, you will want to use this feature with complex filters
 only. However, you can’t combine filters on the command line with a
 filters file in the same command.
Address filtering.

It should come as no surprise that filters can select
 traffic based on addresses. For example, consider the
 command:
bsd1# tcpdump host 205.153.63.30
This command captures all traffic to and from the
 host with the IP address 205.153.63.30. The host may be specified
 by IP number or name. Since an IP address has been specified, you
 might incorrectly guess that the captured traffic will be limited
 to IP traffic. In fact, other traffic, such as ARP traffic, will
 also be collected by this filter. Restricting capture to a
 particular protocol requires a more complex filter. Nonintuitive
 behavior like this necessitates a thorough testing of all
 filters.
Addresses can be specified and restricted in several ways.
 Here is an example that uses the Ethernet address of a computer to
 select traffic:
bsd1# tcpdump ether host 0:10:5a:e3:37:c
 Capture can be further restricted to traffic flows
 for a single direction, either to a host or from a host, using
 src to specify the source of
 the traffic or dst to specify
 the destination. The next example shows a filter that collects
 traffic sent to the host at 205.153.63.30 but not from it:
bsd1# tcpdump dst 205.153.63.30
Note that the keyword host was omitted in this example. Such
 omissions are OK in several instances, but it is always safer to
 include these keywords.
 Multicast or broadcast traffic can be selected by
 using the keyword multicast
 or broadcast, respectively.
 Since multicast and broadcast traffic are specified differently at
 the link level and the network level, there are two forms for each
 of these filters. The filter ether
 multicast captures traffic with an Ethernet multicast
 address, while ip multicast
 captures traffic with an IP multicast address. Similar qualifiers
 are used with broadcast traffic. Be aware that multicast filters
 may capture broadcast traffic. As always, test your
 filters.
Traffic capture can be restricted to networks as well as
 hosts. For example, the following command restricts capture to
 packets coming from or going to the 205.153.60.0 network:
bsd1# tcpdump net 205.153.60
The following command does the same thing:
bsd1# tcpdump net 205.153.60.0 mask 255.255.255.0
Although you might guess otherwise, the following command
 does not work properly due to the final .0:
bsd1# tcpdump net 205.153.60.0
 Be sure to test your filters!

Protocol and port filtering.

It is possible to restrict capture to specific protocols
 such as IP, Appletalk, or TCP. You can also restrict capture to
 services built on top of these protocols, such as DNS or RIP. This
 type of capture can be done in three ways—by using a few specific
 keywords known by tcpdump, by
 protocol using the proto
 keyword, or by service using the port keyword.
Several of these protocol names are recognized by tcpdump and can be identified by
 keyword. The following command restricts the
 traffic captured to IP traffic:
bsd1# tcpdump ip
 Of course, IP traffic will include TCP traffic, UDP
 traffic, and so on.
To capture just TCP traffic, you would use:
bsd1# tcpdump tcp
 Recognized keywords include ip, igmp, tcp, udp, and
 icmp.
 There are many transport-level services that do not
 have recognized keywords. In this case, you can use the keywords
 proto or ip proto followed by either the name of
 the protocol found in the /etc/protocols file or the
 corresponding protocol number. For example, either of the
 following will look for OSPF packets:
bsd1# tcpdump ip proto ospf
bsd1# tcpdump ip proto 89
Of course, the first works only if there is an entry in
 /etc/protocols for
 OSPF.
Built-in keywords may cause problems. In these examples, the
 keyword tcp must either be
 escaped or the number must be used. For example, the following is
 fine:
bsd#1 tcpdump ip proto 6
On the other hand, you can’t use tcp with proto.
bsd#1 tcpdump ip proto tcp
will generate an error.
For higher-level services, services built on top of
 the underlying protocols, you must use the keyword port. Either of the following will
 collect DNS traffic:
bsd#1 tcpdump port domain
bds#1 tcpdump port 53
In the former case, the keyword domain is resolved by looking in
 /etc/services. When there may
 be ambiguity between transport-layer protocols, you may further
 restrict ports to a particular protocol. Consider the
 command:
bsd#1 tcpdump udp port domain
This will capture DNS name lookups using UDP but not DNS
 zone transfers using TCP. The two previous commands would capture
 both.

Packet characteristics.

Filters can also be designed based on packet characteristics
 such as packet length or the contents of a particular field. These
 filters must include a relational operator. To use length, the
 keyword less or greater is used. Here is an
 example:
bsd1# tcpdump greater 200
This command collects packets longer than 200 bytes.
 Looking inside packets is a little more complicated
 in that you must understand the structure of the packet’s header.
 But despite the complexity, or perhaps because of it, this
 technique gives you the greatest control over what is captured.
 (If you are charged with creating a firewall using a product that
 requires specifying offsets into headers, practicing with
 tcpdump could prove
 invaluable.)
 The general syntax is proto [expr :
 size]. The field proto indicates which header to look
 into—ip for the IP header,
 tcp for the TCP header, and
 so forth. The expr field
 gives an offset into the header indexed from 0. That is, the first
 byte in a header is number 0, the second byte is number 1, and so
 forth. Alternately, you can think of expr as the number of bytes in the
 header to skip over. The size
 field is optional. It specifies the number of bytes to use and can
 be 1, 2, or 4.
bsd1# tcpdump "ip[9] = 6"
looks into the IP header at the tenth byte, the protocol
 field, for a value of 6. Notice that this must be quoted. Either
 an apostrophe or double quotes should work, but a backquote will
 not work.
bsd1# tcpdump tcp
is an equivalent command since 6 is the protocol number for
 TCP.
 This technique is frequently used with a mask to
 select specific bits. Values should be in hex. Comparisons are
 specified using the syntax &
 followed by a bit mask. The next example extracts the
 first byte from the Ethernet header (i.e., the first byte of the
 destination address), extracts the low-order bit, and makes sure
 the bit is not 0:[4]
bsd1# tcpdump 'ether[0] & 1 != 0'
 This will match multicast and broadcast
 packets.
With both of these examples, there are better ways of
 matching the packets. For a more realistic example, consider the
 command:
bsd1# tcpdump "tcp[13] & 0x03 != 0"
 This filter skips the first 13 bytes in the TCP
 header, extracting the flag byte. The mask 0x03 selects the first and second bits,
 which are the FIN and SYN bits. A packet is captured if either bit
 is set. This will capture setup or teardown packets for a TCP
 connection.
 It is tempting to try to mix in relational operators
 with these logical operators. Unfortunately, expressions like
 tcp src port > 23 don’t
 work. The best way of thinking about it is that the expression
 tcp src port returns a value
 of true or false, not a numerical value, so it can’t be compared
 to a number. If you want to look for all TCP traffic with a source
 port with a value greater than 23, you must extract the port field
 from the header using syntax such as "tcp[0:2] & 0xffff >
 0x0017".

Compound filters.

All the examples thus far have consisted of simple commands
 with a single test. Compound filters can be constructed in
 tcpdump using logical
 operator and, or, and not. These are often abbreviated
 &&, ||, and ! respectively. Negation has the highest
 precedence. Precedence is left to right in the absence of
 parentheses. While parentheses can be used to change precedence,
 remember that they must be escaped or quoted.
Earlier it was noted that the following will not limit
 capture to just IP traffic:
bsd1# tcpdump host 205.153.63.30
If you really only want IP traffic in this case, use the
 command:
bsd1# tcpdump host 205.153.63.30 and ip
On the other hand, if you want all traffic to the host
 except IP traffic, you could use:
bsd1# tcpdump host 205.153.63.30 and not ip
If you need to capture all traffic to and from the host and
 all non-IP traffic, replace the and with an or.
With complex expressions, you have to be careful of the
 precedence. Consider the two commands:
bsd1# tcpdump host lnx1 and udp or arp
bsd1# tcpdump "host lnx1 and (udp or arp)"
The first will capture all UDP traffic to or from lnx1 and all ARP traffic. What you
 probably want is the second, which captures all UDP or ARP traffic
 to or from lxn1. But beware,
 this will also capture ARP broadcast traffic. To beat a dead
 horse, be sure to test your filters.
 I mentioned earlier that running tcpdump on a remote station using
 telnet was one way to collect
 data across your network, except that the Telnet traffic itself
 would be captured. It should be clear now that the appropriate
 filter can be used to avoid this problem. To eliminate a specific
 TCP connection, you need four pieces of information—the source and
 destination IP addresses and the source and destination port
 numbers. In practice, the two IP addresses and the well-known port
 number is often enough.
For example, suppose you are interested in capturing traffic
 on the host lnx1, you are
 logged onto the host bsd1,
 and you are using telnet to
 connect from bsd1 to
 lnx1. To capture all the
 traffic at lnx1, excluding
 the Telnet traffic between bsd1 and lnx1, the following command will
 probably work adequately in most cases:
lnx1# tcpdump -n "not (tcp port telnet and host lnx1 and host bsd1)"
We can’t just exclude Telnet traffic since that would
 exclude all Telnet traffic between lnx1 and any host. We can’t just
 exclude traffic to or from one of the hosts because that would
 exclude non-Telnet traffic as well. What we want to exclude is
 just traffic that is Telnet traffic, has lnx1 as a host, and has bsd1 as a host. So we take the negation
 of these three requirements to get everything else.
 While this filter is usually adequate, this filter
 excludes all Telnet sessions between the two hosts, not just
 yours. If you really want to capture other Telnet traffic between
 lnx1 and bsd1, you would need to include a
 fourth term in the negation giving the ephemeral port assigned by
 telnet. You’ll need to run
 tcpdump twice, first to
 discover the ephemeral port number for your current session since
 it will be different with every session, and then again with the
 full filter to capture the traffic you are interested in.
One other observation—while we are not reporting the
 traffic, the traffic is still there. If you are investigating a
 bandwidth problem, you have just added to the traffic. You can,
 however, minimize this traffic during the capture if you write out
 your trace to a file on lnx1
 using the -w option. This is
 true, however, only if you are using a local filesystem. Finally,
 note the use of the -n
 option. This is required to prevent name resolution. Otherwise,
 tcpdump would be creating
 additional network traffic in trying to resolve IP numbers into
 names as noted earlier.
Once you have mastered the basic syntax of tcpdump, you should run tcpdump on your own system without any
 filters. It is worthwhile to do this occasionally just to see what
 sorts of traffic you have on your network. There are likely to be
 a number of surprises. In particular, there may be router
 protocols, switch topology information exchange, or traffic from
 numerous PC-based protocols that you aren’t expecting. It is very
 helpful to know that this is normal traffic so when you have
 problems you won’t blame the problems on this strange
 traffic.
This has not been an exhaustive treatment of tcpdump, but I hope that it adequately
 covers the basics. The manpage for tcpdump contains a wealth of additional
 information, including several detailed examples with
 explanations. One issue I have avoided has been how to interpret
 tcpdump data. Unfortunately,
 this depends upon the protocol and is really beyond the scope of a
 book such as this. Ultimately, you must learn the details of the
 protocols. For TCP/IP, Richard W. Stevens’ TCP/IP Illustrated, vol. 1, The Protocols has extensive examples
 using tcpdump. But the best
 way to learn is to use tcpdump to examine the behavior of
 working systems.

Analysis Tools

 As previously noted, one reason for using tcpdump is the wide variety of support tools
 that are available for use with tcpdump or files created with tcpdump. There are tools for sanitizing the
 data, tools for reformatting the data, and tools for presenting and
 analyzing the data.
sanitize

 If you are particularly sensitive to privacy or security
 concerns, you may want to consider sanitize, a collection of five Bourne shell
 scripts that reduce or condense tcpdump trace files and eliminate
 confidential information. The scripts renumber host entries and select
 classes of packets, eliminating all others. This has two primary uses.
 First, it reduces the size of the files you must deal with, hopefully
 focusing your attention on a subset of the original traffic that still
 contains the traffic of interest. Second, it gives you data that can
 be distributed or made public (for debugging or network analysis)
 without compromising individual privacy or revealing too much specific
 information about your network. Clearly, these scripts won’t be useful
 for everyone. But if internal policies constrain what you can reveal,
 these scripts are worth looking into.
 The five scripts included in sanitize are sanitize-tcp, sanitize-syn-fin, sanitize-udp, sanitize-encap, and sanitize-other. Each script filters out
 inappropriate traffic and reduces the remaining traffic. For example,
 all non-TCP packets are removed by sanitize-tcp and the remaining TCP traffic
 is reduced to six fields—an unformatted timestamp, a renumbered source
 address, a renumbered destination address, the source port, a
 destination address, and the number of data bytes in the
 packet.
934303014.772066 205.153.63.30.1174 > 205.153.63.238.23: . ack 3259091394 win 8647 (DF)
 4500 0028 b30c 4000 8006 2d84 cd99 3f1e
 cd99 3fee 0496 0017 00ff f9b3 c241 c9c2
 5010 21c7 e869 0000 0000 0000 0000
would be reduced to 934303014.772066 1
 2 1174 23 0. Notice that the IP numbers have been replaced
 with 1 and 2, respectively. This will be done in a
 consistent manner with multiple packets so you will still be able to
 compare addresses within a single trace. The actual data reported
 varies from script to script. Here is an example of the syntax:
bsd1# sanitize-tcp tracefile
This runs sanitize-tcp over
 the tcpdump trace file tracefile. There are no arguments.

tcpdpriv

 The program tcpdpriv is another program for removing
 sensitive information from tcpdump files. There are several major
 differences between tcpdpriv and
 sanitize. First, as a shell
 script, sanitize should run on
 almost any Unix system. As a compiled program, this is not true of
 tcpdpriv. On the other hand,
 tcpdpriv supports the direct
 capture of data as well as the analysis of existing files. The
 captured packets are written as a tcpdump file, which can be subsequently
 processed.
 Also, tcpdpriv
 allows you some degree of control over how much of the original data
 is removed or scrambled. For example, it is possible to have an IP
 address scrambled but retain its class designation. If the -C4 option is chosen, an IP address such as
 205.153.63.238 might be replaced
 with 193.0.0.2. Notice that
 address classes are preserved—a class C address is replaced with a
 class C address.
There are a variety of command-line options that control how
 data is rewritten, several of which are mandatory. Many of the
 command-line options will look familiar to tcpdump users. The program does not allow
 output to be written to a terminal, so it must be written directly to
 a file or redirected. While a useful program, the number of required
 command-line options can be annoying. There is some concern that if
 the options are not selected properly, it may be possible to
 reconstruct the original data from the scrambled data. In practice,
 this should be a minor concern.
As an example of using tcpdpriv, the following command will
 scramble the file tracefile:
bsd1# tcpdpriv -P99 -C4 -M20 -r tracefile -w outfile
 The -P99 option
 preserves (doesn’t scramble) the port numbers, -C4 preserves the class identity of the IP
 addresses, and -M20 preserves
 multicast addresses. If you want the data output to your terminal, you
 can pipe the output to tcpdump:
bsd1# tcpdpriv -P99 -C4 -M20 -r tracefile -w- | tcpdump -r-
The last options look a little strange, but they will
 work.

tcpflow

 Another useful tool is tcpflow, written by Jeremy Elson. This
 program allows you to capture individual TCP flows or sessions. If the
 traffic you are looking at includes, say, three different Telnet
 sessions, tcpflow will separate
 the traffic into three different files so you can examine each
 individually. The program can reconstruct data streams regardless of
 out-of-order packets or retransmissions but does not understand
 fragmentation.
tcpflow stores each flow in a separate file with names based on
 the source and destination addresses and ports. For example, SSH
 traffic (port 22) between 172.16.2.210 and 205.153.63.30 might have the filename
 172.016.002.210.00022-205.153.063.030.01071,
 where 1071 is the ephemeral port created for the session.
 Since tcpflow uses
 libpcap, the same packet capture
 library tcpdump uses, capture
 filters are constructed in exactly the same way and with the same
 syntax. It can be used in a number of ways. For example, you could see
 what cookies are being sent during an HTTP session. Or you might use
 it to see if SSH is really encrypting your data. Of course, you could
 also use it to capture passwords or read email, so be sure to set
 permissions correctly.

tcp-reduce

 The program tcp-reduce invokes a collection of shell
 scripts to reduce the packet capture information in a tcpdump trace file to one-line summaries
 for each connection. That is, an entire Telnet session would be
 summarized by a single line. This could be extremely useful in getting
 an overall picture of how the traffic over a link breaks down or for
 looking quickly at very large files.
The syntax is quite simple.
bsd1# tcp-reduce tracefile > outfile
will reduce tracefile, putting the output in outfile. The program tcp-summary, which comes with tcp-reduce, will further summarize the
 results. For example, on my system I traced a system briefly with
 tcpdump. This process collected
 741 packets. When processed with tcp-reduce, this revealed 58 TCP
 connections. Here is an example when results were passed to tcp-summary :
bsd1# tcp-reduce out-file | tcp-summary
This example produced the following five-line summary:
proto # conn KBytes % SF % loc % ngh
----- ------ ------ ---- ----- -----
www 56 35 25 0 0
telnet 1 1 100 0 0
pop-3 1 0 100 0 0
In this instance, this clearly shows that the HTTP traffic
 dominated the local network traffic.

tcpshow

 The program tcpshow
 decodes a tcpdump trace file. It
 represents an alternative to using tcpdump to decode data. The primary
 advantage of tcpshow is much
 nicer formatting for output. For example, here is the tcpdump output for a packet:
12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack
3259091394 win 8647 (DF) b
Here is corresponding output from tcpshow for the same packet:

Packet 1
TIME: 12:36:54.772066
LINK: 00:10:5A:A1:E9:08 -> 00:10:5A:E3:37:0C type=IP
 IP: sloan -> 205.153.63.238 hlen=20 TOS=00 dgramlen=40 id=B30C
 MF/DF=0/1 frag=0 TTL=128 proto=TCP cksum=2D84
 TCP: port 1174 -> telnet seq=0016775603 ack=3259091394
 hlen=20 (data=0) UAPRSF=010000 wnd=8647 cksum=E869 urg=0
DATA: <No data>

The syntax is:
bsd1# tcpshow < trace-file
There are numerous options.

tcpslice

 The program tcpslice is a simple but useful program for
 extracting pieces or merging tcpdump files. This is a useful utility for
 managing larger tcpdump files.
 You specify a starting time and optionally an ending time for a file,
 and it extracts the corresponding records from the source file. If
 multiple files are specified, it extracts packets from the first file
 and then continues extracting only those packets from the next file
 that have a later timestamp. This prevents duplicate packets if you
 have overlapping trace files.
While there are a few options, the basic syntax is quite simple.
 For example, consider the command:
bsd1# tcpslice 934224220.0000 in-file > out-file
This will extract all packets with timestamps after
 934224220.0000. Note the use of an
 unformatted timestamp. This is the same format displayed with the
 -tt option with tcpdump. Note also the use of redirection.
 Because it works with binary files, tcpslice will not allow you to send output
 to your terminal. See the manpage for additional options.

tcptrace

 This program is an extremely powerful tcpdump file analysis tool. The program
 tcptrace is strictly an analysis
 tool, not a capture program, but it works with a variety of capture
 file formats. The tool’s primary focus is the analysis of TCP
 connections. As such, it is more of a network management tool than a
 packet analysis tool. The program provides several levels of output or
 analysis ranging from very brief to very detailed.
 While for most purposes tcptrace is used as a command-line tool,
 tcptrace is capable of producing
 several types of output files for plotting with the X Window program
 xplot. These include
 time sequence graphs, throughput
 graphs, and graphs of round-trip
 times. Time sequence graphs (-S
 option) are plots of sequence numbers over time that give a
 picture of the activity on the network. Throughput graphs (-T option), as the name implies, plot
 throughput in bytes per second against time. While throughput gives a
 picture of the volume of traffic on the network, round-trip times give
 a better picture of the delays seen by individual connections.
 Round-trip time plots (-R option)
 display individual round-trip times over time. For other graphs and
 graphing options, consult the documentation.
 For normal text-based operations, there are an
 overwhelming number of options and possibilities. One of the most
 useful is the -l option. This
 produces a long listing of summary statistics on a
 connection-by-connection basis. What follows is an example of the
 information provided for a single brief Telnet connection:
TCP connection 2:
 host c: sloan.lander.edu:1230
 host d: 205.153.63.238:23
 complete conn: yes
 first packet: Wed Aug 11 11:23:25.151274 1999
 last packet: Wed Aug 11 11:23:53.638124 1999
 elapsed time: 0:00:28.486850
 total packets: 160
 filename: telnet.trace
 c->d: d->c:
 total packets: 96 total packets: 64
 ack pkts sent: 95 ack pkts sent: 64
 pure acks sent: 39 pure acks sent: 10
 unique bytes sent: 119 unique bytes sent: 1197
 actual data pkts: 55 actual data pkts: 52
 actual data bytes: 119 actual data bytes: 1197
 rexmt data pkts: 0 rexmt data pkts: 0
 rexmt data bytes: 0 rexmt data bytes: 0
 outoforder pkts: 0 outoforder pkts: 0
 pushed data pkts: 55 pushed data pkts: 52
 SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1
 mss requested: 1460 bytes mss requested: 1460 bytes
 max segm size: 15 bytes max segm size: 959 bytes
 min segm size: 1 bytes min segm size: 1 bytes
 avg segm size: 2 bytes avg segm size: 23 bytes
 max win adv: 8760 bytes max win adv: 17520 bytes
 min win adv: 7563 bytes min win adv: 17505 bytes
 zero win adv: 0 times zero win adv: 0 times
 avg win adv: 7953 bytes avg win adv: 17519 bytes
 initial window: 15 bytes initial window: 3 bytes
 initial window: 1 pkts initial window: 1 pkts
 ttl stream length: 119 bytes ttl stream length: 1197 bytes
 missed data: 0 bytes missed data: 0 bytes
 truncated data: 1 bytes truncated data: 1013 bytes
 truncated packets: 1 pkts truncated packets: 7 pkts
 data xmit time: 28.479 secs data xmit time: 27.446 secs
 idletime max: 6508.6 ms idletime max: 6709.0 ms
 throughput: 4 Bps throughput: 42 Bps
This was produced by using tcpdump to capture all traffic into the
 file telnet.trace and then
 executing tcptrace to process the
 data. Here is the syntax required to produce this output:
bsd1# tcptrace -l telnet.trace
Similar output is produced for each TCP connection recorded in
 the trace file. Obviously, a protocol (like HTTP) that uses many
 different sessions may overwhelm you with output.
There is a lot more to this program than covered in this brief
 discussion. If your primary goal is analysis of network performance
 and related problems rather than individual packet analysis, this is a
 very useful tool.

trafshow

 The program trafshow is a packet capture program of a
 different sort. It provides a continuous display of traffic over the
 network, giving repeated snapshots of traffic. It displays the source
 address, destination address, protocol, and number of bytes. This
 program would be most useful in looking for suspicious traffic or just
 getting a general idea of network traffic.
While trafshow can be run
 on a text-based terminal, it effectively takes over the display. It is
 best used in a separate window of a windowing system. There are a
 number of options, including support for packet filtering using the
 same filter format as tcpdump.

xplot

 The xplot program
 is an X Windows plotting program. While it is a general purpose
 plotting program, it was written as part of a thesis project for TCP
 analysis by David Clark. As a result, some support for plotting TCP
 data (oriented toward network analysis) is included with the package.
 It is also used by tcptrace.
 While a powerful and useful program, it is not for the faint of heart.
 Due to the lack of documentation, the program is easiest to use with
 tcptrace rather than as a
 standalone program.

Other Packet Capture Programs

 We have discussed tcpdump in detail because it is the most
 widely available packet capture program for Unix. Many implementations
 of Unix have proprietary packet capture programs that are comparable
 to tcpdump. For example, Sun
 Microsystems’ Solaris provides snoop. (This is a replacement for etherfind, which was supplied with earlier
 versions of the Sun operating system.)
Here is an example of using snoop to capture five packets:
sol1> snoop -c5
Using device /dev/elxl (promiscuous mode)
172.16.2.210 -> sol1 TELNET C port=28863
 sol1 -> 172.16.2.210 TELNET R port=28863 /dev/elxl (promiscuo
172.16.2.210 -> sol1 TELNET C port=28863
172.16.2.210 -> sloan.lander.edu TCP D=1071 S=22 Ack=143990 Seq=3737542069 Len=60 Win=17520
sloan.lander.edu -> 172.16.2.210 TCP D=22 S=1071 Ack=3737542129 Seq=143990 Len=0 Win=7908
snoop: 5 packets captured
As you can see, it is used pretty much the same way as tcpdump. (Actually, the output has a
 slightly more readable format.) snoop, like tcpdump, supports a wide range of options
 and filters. You should have no trouble learning snoop if you have ever used tcpdump.
 Other systems will provide their own equivalents (for
 example, AIX provides iptrace).
 While the syntax is different, these tools are used in much the same
 way.

Packet Analyzers

 Even with the tools just described, the real limitation
 with tcpdump is interpreting the
 data. For many uses, tcpdump may be
 all you need. But if you want to examine the data within packets, a
 packet sniffer is not enough. You need a packet analyzer. A large number
 of packet analyzers are available at tremendous prices. But before you
 start spending money, you should consider ethereal.
ethereal

ethereal is available both as an X Windows program for Unix
 systems and as a Microsoft Windows program. It can be used as a
 capture tool and as an analysis tool. It uses the same capture engine
 and file format as tcpdump, so
 you can use the same filter syntax when capturing traffic, and you can
 use ethereal to analyze tcpdump files. Actually, ethereal supports two types of filters,
 capture filters based on tcpdump
 and display filters used to control what you are looking at. Display
 filters use a different syntax and are described later in this
 section.
Using ethereal

Usually ethereal
 will be managed entirely from a windowing environment. While it can
 be run with command-line options, I’ve never encountered a use for
 these. (There is also a text-based version, tethereal.) When you run ethereal, you are presented with a window
 with three initially empty panes. The initial screen is similar to
 Figure 5-1 except
 the panes are empty. (These figures are for the Windows
 implementation of ethereal, but
 these windows are almost identical to the Unix version.) If you have
 a file you want to analyze, you can select File → Open. You can either load a tcpdump file created with the -w option or a file previously saved from
 ethereal.
[image: ethereal]

Figure 5-1. ethereal

 To capture data, select Capture → Start. You will be presented with a
 Capture Preferences screen like the one shown in Figure 5-2. If you have
 multiple interfaces, you can select which one you want to use with
 the first field. The Count: field is used to limit the number of
 packets you will collect. You can enter a capture filter, using
 tcpdump syntax, in the Filter:
 field. If you want your data automatically saved to a file, enter
 that in the File: field. The fifth field allows you to limit the
 number of bytes you collect from the packet. This can be useful if
 you are interested only in header information and want to keep your
 files small. The first of the four buttons allows you to switch
 between promiscuous and nonpromiscuous mode. With the latter, you’ll
 collect only traffic sent to or from your machine rather than
 everything your machine sees. Select the second button if you want
 to see traffic as it is captured. The third button selects automatic
 scrolling. Finally, the last button controls name resolution. Name
 resolution really slows ethereal down. Don’t enable name
 resolution if you are going to display packets in real time! Once
 you have everything set, click on OK to begin capturing data.
[image: ethereal Capture Preferences]

Figure 5-2. ethereal Capture Preferences

 While you are capturing traffic, ethereal will display a Capture window
 that will give you counts for the packets captured in real time.
 This window is shown in Figure 5-3. If you
 didn’t say how many frames you wanted to capture on the last screen,
 you can use the Stop button to end capture.
[image: ethereal Capture]

Figure 5-3. ethereal Capture

 Once you have finished capturing data, you’ll want to
 go back to the main screen shown in Figure 5-1. The top
 pane displays a list of the captured packets. The lower panes
 display information for the packet selected in the top pane. The
 packet to be dissected is selected in the top pane by clicking on
 it. The second pane then displays a protocol tree for the packet,
 while the bottom pane displays the raw data in hex and ASCII. The
 layout of ethereal is shown in
 Figure 5-1.
 You’ll probably want to scroll through the top pane until you find
 the traffic of interest. Once you have selected a packet, you can
 resize the windows as needed. Alternately, you can select Display
 → Show Packet in New
 Window to open a separate window, allowing you to open several
 packets at once.
 The protocol tree basically displays the structure of
 the packet by analyzing the data and determining the header type and
 decoding accordingly. Fields can be expanded or collapsed by
 clicking on the plus or minus next to the field, respectively. In
 the figure, the Internet Protocol header has been expanded and the
 Type-Of-Service (TOS) field in turn has been expanded to show the
 various values of the TOS flags. Notice that the raw data for the
 field selected in the second pane is shown in bold in the bottom
 pane. This works well for most protocols, but if you are using some
 unusual protocol, like other programs, ethereal will not know what to do with
 it.
ethereal has several other useful features. For example, you
 can select a TCP packet from the main pane and then select Tools
 → Follow TCP Stream.
 This tool collects information from all the packets in the TCP
 session and displays the information. Unfortunately, while
 convenient at times, this feature makes it just a little too easy to
 capture passwords or otherwise invade users’ privacy.
The Tools → Summary gives you the details for data you
 are looking at. An example is shown in Figure 5-4.
[image: ethereal Summary]

Figure 5-4. ethereal Summary

There are a number of additional features that I haven’t gone
 into here. But what I described here is more than enough for most
 simple tasks.

Display filters

 Display filters allow you to selectively display data
 that has been captured. At the bottom of the window shown in Figure 5-1, there is a
 box for creating display filters. As previously noted, display
 filters have their own syntax. The ethereal documentation describes this
 syntax in great detail. In this case, I have entered
 http to limit the displayed traffic to web
 traffic. I could just as easily enter any number of other different
 protocols—ip, udp, icmp, arp, dns, etc.
The real power of ethereal
 ’s display filters comes when you realize that you don’t
 really need to understand the syntax of display filters to start
 using them. You can select a field from the center pane and then
 select Display → Match
 Selected, and ethereal will
 construct and apply the filter for you. Of course, not every field
 is useful, but it doesn’t take much practice to see what works and
 what doesn’t work.
 The primary limitation of this approach comes in
 constructing compound filters. If you want to capture all the
 traffic to or from a computer, you won’t be able to match a single
 field. But you should be able to discover the syntax for each of the
 pieces. Once you know that ip.src==205.153.63.30 matches all IP
 traffic with 205.153.63.30 as
 its source and that ip.dst==205.153.63.30 matches all IP
 traffic to 205.153.63.30, it
 isn’t difficult to come up with the filter you need, ip.src==205.153.63.30 or ip.dst==205.153.63.30. Display filters are
 really very intuitive, so you should have little trouble learning
 how to use them.
Perhaps more than any other tool described in this book,
 ethereal is constantly being
 changed and improved. While this book was being written, new
 versions were appearing at the rate of about once a month. So you
 should not be surprised if ethereal looks a little different from
 what is described here. Fortunately, ethereal is a well-developed program that
 is very intuitive to use. You should have little trouble going on
 from here.

Dark Side of Packet Capture

 What you can do, others can do. Pretty much anything you
 can discover through packet capture can be discovered by anyone else
 using packet capture in a similar manner. Moreover, some technologies
 that were once thought to be immune to packet capture, such as switches,
 are not as safe as once believed.
Switch Security

 Switches are often cited as a way to protect traffic
 from sniffing. And they really do provide some degree of protection
 from casual sniffing. Unfortunately, there are several ways to defeat
 the protection that switches provide.
 First, many switches will operate as hubs, forwarding
 traffic out on every port, whenever their address tables are full.
 When first initialized, this is the default behavior until the address
 table is built. Unfortunately, tools like macof, part of the dsniff suite of tools, will flood switches
 with MAC addresses overflowing a switch’s address table. If your
 switch is susceptible, all you need to do to circumvent security is
 run the program.
Second, if two machines have the same MAC address, some
 switches will forward traffic to both machines. So if you want copies
 of traffic sent to a particular machine on your switch, you can change
 the MAC address on your interface to match the target devices’ MAC
 address. This is easily done on many Unix computers with the ifconfig command.
 A third approach, sometimes called ARP
 poisoning, is to send a forged ARP packet to the source
 device. This can be done with a tool like arpredirect, also part of dsniff. The idea is to substitute the
 packet capture device’s MAC address for the destination’s MAC address.
 Traffic will be sent to a packet capture device, which can then
 forward the traffic to its destination. Of course, the forged ARP
 packets can be sent to any number of devices on the switch.
 The result, with any of these three techniques, is that
 traffic will be copied to a device that can capture it. Not all
 switches are susceptible to all of these attacks. Some switches
 provide various types of port security including static ARP
 assignments. You can also use tools like arpwatch to watch for suspicious activities
 on your network. (arpwatch is
 described in Chapter 6.)
 If sniffing is a concern, you may want to investigate what options you
 have with your switches.
While these techniques could be used to routinely capture
 traffic as part of normal management, the techniques previously
 suggested are preferable. Flooding the address table can significantly
 degrade network performance. Duplicating a MAC address will allow you
 to watch traffic only to a single host. ARP poisoning is a lot of work
 when monitoring more than one host and can introduce traffic delays.
 Consequently, these aren’t really techniques that you’ll want to use
 if you have a choice.

Protecting Yourself

 Because of the potential for abuse, you should be very
 circumspect about who has access to packet capture tools. If you are
 operating in a Unix-only environment, you may have some success in
 restricting access to capture programs. packet capture programs should
 always be configured as privileged commands. If you want to allow
 access to a group of users, the recommended approach is to create an
 administrative group, restrict execution of packet capture programs to
 that group, and give group membership only to a small number of
 trusted individuals. This amounts to setting the SUID bit for the
 program, but limiting execution to the owner and any group
 members.
 With some versions of Unix, you might even consider
 recompiling the kernel so the packet capture software can’t be run on
 machines where it isn’t needed. For example, with FreeBSD, it is very
 straightforward to disable the Berkeley packet filter in the kernel.
 (With older versions of FreeBSD, you needed to explicitly enable it.)
 Another possibility is to use interfaces that don’t support
 promiscuous mode. Unfortunately, these can be hard to find.
 There is also software that can be used to check to see
 if your interface is in promiscuous mode. You can do this manually
 with the ifconfig command. Look
 for PROMISC in the flags for the
 interface. For example, here is the output for one interface in
 promiscuous mode:
bsd2# ifconfig ep0
ep0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500
 inet 172.16.2.236 netmask 0xffffff00 broadcast 172.16.2.255
 inet6 fe80::260:97ff:fe06:2222%ep0 prefixlen 64 scopeid 0x2
 ether 00:60:97:06:22:22
 media: 10baseT/UTP
 supported media: 10baseT/UTP
Of course, you’ll want to check every interface.
 Alternately, you could use a program like cpm, check promiscuous
 mode from CERT/CC. lsof, described in Chapter 11, can be used to
 look for large open files that might be packet sniffer output. But if
 you have Microsoft Windows computers on your network or allow
 user-controlled computers on your network, this approach isn’t
 enough.
 While it may appear that packet capture is a purely
 passive activity that is undetectable, this is often not the case.
 There are several techniques and tools that can be used to indicate
 packet capture or to test remote interfaces to see if they are in
 promiscuous mode. One of the simplest techniques is to turn your
 packet capture software on, ping an unused IP address, and watch for
 DNS queries trying to resolve that IP address. An unused address
 should be ignored. If someone is trying to resolve the address, it is
 likely they have captured a packet.
Another possibility is the tool antisniff from L0pht Heavy Industries. This
 is a commercial tool, but a version is available for noncommercial
 uses. There are subtle changes in the behavior of an interface when
 placed in promiscuous mode. This tool is designed to look for those
 changes. It can probe the systems on a network, examine their
 responses, and usually determine which devices have an interface in
 promiscuous mode.
 Another approach is to restructure your network for
 greater security. To the extent you can limit access to traffic, you
 can reduce the packet capture. Use of virtual LANs can help, but no
 approach is really foolproof. Ultimately, strong encryption is your
 best bet. This won’t stop sniffing, but it will protect your data.
 Finally, it is always helpful to have clearly defined policies. Make
 sure your users know that unauthorized packet capture is not
 acceptable.

Microsoft Windows

 In general, it is inadvisable to leave packet capture
 programs installed on Windows systems unless you are quite comfortable
 with the physical security you provide for those machines. Certainly,
 packet capture programs should never be installed on publicly accessible
 computers using consumer versions of Windows.
 The programs WinDump95 and WinDump are ports of tcpdump to Windows 95/98 and Windows NT,
 respectively. Each requires the installation of the appropriate drivers.
 They are run in DOS windows and have the same basic syntax as tcpdump. As tcpdump has already been described, there is
 little to add here.
ethereal is also available for Windows and, on the whole, works
 quite well. The one area in which the port doesn’t seem to work is in
 sending output directly to a printer. However, printing to files works
 nicely so you can save any output you want and then print it.
 One of the more notable capture programs available for
 Windows platforms is netmon
 (Network Monitor), a basic version of which is included with Windows NT
 Server. The netmon program was
 originally included with Windows NT 3.5 as a means of collecting data to
 send to Microsoft’s technical support. As such, it was not widely
 advertised. Figure
 5-5 shows the packet display window.
[image: netmon for Windows]

Figure 5-5. netmon for Windows

 The basic version supplied with Windows NT Server is quite
 limited in scope. It restricts capture to traffic to or from the server
 and severely limits the services it provides. The full version is
 included as part of the Systems Management Server (SMS), part of the
 BackOffice suite, and is an extremely powerful program. Of concern with
 any capture and analysis program is what protocols can be effectively
 decoded. As might be expected, netmon is extremely capable when dealing with
 Microsoft protocols but offers only basic decoding of Novell protocols.
 (For Novell protocols, consider Novell’s LANalyzer.)
One particularly nice feature of netmon is the ability to set up collection
 agents on any Windows NT workstation and have them collect data
 remotely. The collected data resides with the agent until needed, thus
 minimizing traffic over the network.
The program is, by default, not installed. The program can be
 added as a service under network configuration in the setup window. It
 is included under Administrative Tools (Common). The program, once
 started, is very intuitive and has a strong help system.

[1] There are two obvious exceptions. The data may be encrypted,
 or the data may be fragmented among multiple packets.

[2] This assumes the switches have been running long enough to
 have a reasonably complete address table. Most switches forward
 traffic onto all ports if the destination address is unknown. So
 when they are first turned on, switches look remarkably like
 hubs.

[3] On a few systems you may need to manually place the interface
 in promiscuous mode with the ifconfig
 command before running the packet capture
 software.

[4] The astute reader will notice that this test could be
 more concisely written as =1 rather than !=0. While it doesn’t matter for
 this example, using the second form simplifies testing in some
 cases and is a common idiom. In the next command, the syntax
 is simpler since you are testing to see if multiple bits are
 set.

Chapter 3. Connectivity Testing

 This chapter describes simple tests for individual network
 links and for end-to-end connectivity between networked devices. The tools
 described in this chapter are used to show that there is a functioning
 connection between two devices. These tools can also be used for more
 sophisticated testing, including the discovery of path characteristics and
 the general performance measurements. These additional uses are described
 in Chapter 4. Tools used for
 testing protocol issues related to connectivity are described in Chapter 9. You may want to turn
 next to these chapters if you need additional information in either of
 these areas.
This chapter begins with a quick review of cabling practices. If
 your cabling isn’t adequate, that’s the first thing you need to address.
 Next, there is a lengthy discussion of using ping to test connectivity along with issues
 that might arise when using ping,
 such as security problems. Next, I describe alternatives to ping. Finally, I discuss alternatives that run
 on Microsoft Windows platforms.
Cabling

 For most managers, cabling is the most boring part of a
 network. Even administrators who are normally control freaks will often
 jump at the opportunity to delegate or cede responsibility for cabling
 to somebody else. It has none of the excitement of new equipment or new
 software. It is often hidden away in wiring closets, walls, and
 ceilings. When it is visible, it is usually in the way or an eyesore.
 The only time most managers think about cabling is when it is causing
 problems. Yet, unless you are one of a very small minority running a
 wireless network, it is the core of your network. Without adequate
 cabling, you don’t have a network.
Although this is a book about software tools, not cabling, the
 topics are not unrelated. If you have a cabling problem, you may need to
 turn to the tools described later in this chapter to pinpoint the
 problem. Conversely, to properly use these tools, you can’t ignore
 cabling, as it may be the real source of your problems.
If a cable is damaged, it won’t be difficult to recognize
 the problem. But intermittent cabling problems can be a nightmare to
 solve. The problem may be difficult to recognize as a cabling problem.
 It may come and go, working correctly most of the time. The problem may
 arise in cables that have been in use for years. For example, I once
 watched a technician try to deal with a small classroom LAN that had
 been in use for more than five years and would fail only when the
 network was heavily loaded, i.e., if and only if there was a scheduled
 class in the room. The problem took weeks before what proved to be a
 cabling problem was resolved. In the meantime, several classes were
 canceled.
A full discussion of cabling practices, standards, and
 troubleshooting has been the topic of several books, so this coverage
 will be very selective. I am assuming that you are familiar with the
 basics. If not, several references in Appendix B provide a general but
 thorough introduction to cabling.
With cabling, as with most things, it is usually preferable to
 prevent problems than to have to subsequently deal with them. The best
 way to avoid cabling problems is to take a proactive approach. While
 some of the following suggestions may seem excessive, the costs are
 minimal when compared to what can be involved in solving a
 problem.
Installing New Cabling

 If you are faced with a new installation, take the time
 to be sure it is done correctly from the start. While it is fairly
 straightforward to wire a few machines together in a home office,
 cabling should not generally be viewed as a do-it-yourself job. Large
 cabling projects should be left to trained professionals whenever
 possible.
 Cabling is usually a large investment. Correcting
 cabling problems can be very costly in lost time both for diagnosing
 the problem and for correcting the problem. Also, cabling must conform
 to all applicable building and fire codes. For example, using
 nonplenum cabling in plenum spaces can, in the event of a fire,
 greatly endanger the safety of you and your fellow workers.
 (Plenum cabling is cabling designed to be used in
 plenum spaces, spaces used to recirculate air in
 a building. It uses materials that have low flame-spread and low
 smoke-producing properties.)
 Cabling can also be very sensitive to its physical
 environment. Cable that runs too near fluorescent lights or large
 motors, e.g., elevator motors, can be problematic. Proximity to power
 lines can also cause problems. The network cable acts like an antenna,
 picking up other nearby electrical activity and introducing unwanted
 signals or noise onto the network. This can be highly intermittent and
 very difficult to identify. Concerns such as these should be enough to
 discourage you from doing the job yourself unless you are very
 familiar with the task.
Unfortunately, sometimes budget or organizational policies are
 such that you will have no choice but to do the job yourself or use
 internal personnel. If you must do the job yourself, take the time to
 learn the necessary skills before you begin. Get formal training if at
 all possible. Invest in the appropriate tools and test equipment to do
 the job correctly. And make sure you aren’t violating any building or
 fire codes.
 If the wiring is handled by others, you will need to
 evaluate whether those charged with the task really have the skill to
 complete the job. Most electricians and telephone technicians are not
 familiar with data cabling practices. Worse still, many don’t realize
 this. So, if asked, they will reassure you they can do the job. If
 possible, use an installer who has been certified in data cabling.
 Once you have identified a likely candidate, follow up on her
 references. Ask for the names of some past customers and call those
 customers. If possible, ask to see some of her work.
When planning a project, you should install extra cable whenever
 feasible. It is much cheaper to pull extra cable as you go than to go
 back and install new cable or replace a faulty cable. You should also
 consider technologies that will support higher speeds than you are
 currently using. For example, if you are using 10-Mbps Ethernet to the
 desktop, you should install cable that will support 100 Mbps. In the
 past it has been a common recommendation to install fiber-optic cables
 to the desk as well, even if you aren’t using fiber technologies at
 the desk at this time. Recent developments with copper cables have
 made this more of a judgment call. Certainly, you will want to pull
 spare fiber to any point your backbone may eventually include.
If at all feasible, cabling should be certified. This means that
 each cable is tested to ensure that it meets appropriate performance
 standards for the intended application. This can be particularly
 important for spare cabling. When it is time to use that cable, you
 don’t want any nasty surprises.
Adequate documentation is essential. Maintenance will be
 much simpler if you follow cabling standards and use one of the more
 common structured cable schemes. More information can be found in the
 sources given in Appendix
 B.

Maintaining Existing Cabling

 For existing cabling, you won’t have as much latitude as
 with a new installation. You certainly won’t want to go back and
 replace working cable just because it does not follow some set of
 standards. But there are several things you can do to make your life
 simpler when you eventually encounter problems.
The first step in cable management is knowing which
 cable is which and where each cable goes. Perhaps the most important
 tool for the management and troubleshooting of cabling is a good label
 maker. Even if you weren’t around when the cable was originally
 installed, you should be able, over time, to piece together this
 information. You will also want to collect basic information about
 each cable such as cable types and lengths.
 You will want to know which of your cables don’t meet
 standards. If you have one of the more sophisticated cable testers,
 you can self-certify your cabling plant. You probably won’t want to do
 either of these tasks all at once, but you may be able to do a little
 at a time. And you will definitely want to do it for any changes or
 additions you make.
Labeling Cables
 This should be a self-explanatory topic. Unfortunately
 for some, this is not the case. I have very vivid memories of
 working with a wiring technician with years of experience. The
 individual had worked for major organizations and should have been
 quite familiar with labeling practices.
We were installing a student laboratory. The laboratory has a
 switch mounted in a box on the wall. Cabling went from the box into
 the wall and then through cable raceways down the length of the
 room. Along the raceway, it branched into raceways built into
 computer tables going to the individual computers. The problem
 should be clear. Once the cable disappears into the wall and
 raceways, it is impossible to match the end at the switch with the
 corresponding end that emerges at the computer.
While going over what needed to be done, I mentioned,
 needlessly I thought, that the cable should be clearly labeled. This
 was just one part of my usual lengthy litany. He thought for a
 moment and then said, “I guess I can do that.” Then a puzzled
 expression came over his face and he added in dead earnest, “Which
 end do you want labeled?” I’d like to think he was just putting me
 on, but I don’t think so.
You should use some method of attaching labels that is
 reasonably permanent. It can be very discouraging to find several
 labels lying on the floor beneath your equipment rack. Also, you
 should use a meaningful scheme for identifying your cables.
 TIA/EIA-606 Administration Standard for Telecommunications
 Infrastructure of Commercial Buildings provides one
 possibility. (See Appendix
 B for more information of TIA/EIA standards.) And, at the
 risk of stating the obvious, unless you can see the entire cable at
 the same time, it should be labeled at both ends.

Testing Cabling

 Cable testing can be a simple, quick check for
 continuity or a complex set of measurements that carefully
 characterizes a cable’s electrical properties. If you are in a hurry
 to get up and running, you may be limited to simple connectivity
 tests, but the more information you collect, the better prepared you
 will be to deal with future problems. If you must be up quickly, make
 definite plans to return and finish the job, and stick to those
 plans.
Link lights

 Perhaps the simplest test is to rely on the network
 interface’s link lights. Almost all networking
 equipment now has status lights that show, when lit, that you have
 functioning connections. If these do not light when you make a
 connection, you definitely have a problem somewhere. Keep in mind,
 however, a lit link light does not necessarily indicate the absence
 of a problem.
 Many devices have additional indicators that give you
 more information. It is not uncommon to have a transmit
 light that blinks each time a packet is sent, a
 receive light that blinks each time a packet is
 received, and a collision light that blinks
 each time the device detects a collision. To get an idea of what is
 normal, look at the lights on other computers on the same
 network.
 Typically, you would expect to see the receive light
 blinking intermittently as soon as you connect the device to an
 active network. Generally, anomalous behavior with the receive light
 indicates a problem somewhere else on your network. If it doesn’t
 ever light, you may have a problem with your connection to the
 network. For example, you could be plugged into a hub that is not
 connected to the network. If the light is on all or most of the
 time, you probably have an overloaded network.
The transmit light should come on whenever you access the
 network but should remain off otherwise. You may be surprised,
 however, how often a computer will access the network. It will
 almost certainly blink several times when your computer is booted.
 If in doubt, try some basic networking tasks while watching for
 activity. If it does not light when you try to access the network,
 you have problems on that computer. If it stays lit, you not only
 have a problem but also are probably flooding the network with
 packets, thereby causing problems for others on the network as well.
 You may want to isolate this machine until the problem is
 resolved.
In the ideal network, from the user’s perspective at least,
 the collision light should remain relatively inactive. However,
 excessive collision light flashing or even one that remains on most
 of the time may not indicate a problem. A collision is a very brief
 event. If the light only remained on for the length of the event,
 the flash would be too brief to be seen. Consequently, these lights
 are designed to remain on much longer than the actual event. A
 collision light that remains on doesn’t necessarily mean that your
 network is saturated with collisions. On the other hand, this is
 something you’ll want to investigate further.
For any of the cases in which you have an indication
 of a network overload, unless your network is completely saturated,
 you should be able to get some packets through. And you should see
 similar problems on every computer on that network segment. If your
 network is completely saturated, then you may have a malfunctioning
 device that is continuously transmitting. Usually, this can be
 easily located by turning devices off one at a time until the
 problem suddenly disappears.
If you have an indication of a network overload, you should
 look at the overall behavior and structure of your network. A good
 place to start is with netstat
 as discussed in Chapter
 4. For a more thorough discussion of network performance
 monitoring, turn to Chapter
 8.
Warning
One last word of warning—you may see anomalous behavior with
 any of these lights if your interface is misconfigured or has the
 wrong driver installed.

Cable testers

 A wide variety of cable testers are available.
 Typically, you get what you pay for. Some check little more than
 continuity and the cable’s pin-out (that the individual wires are
 connected to the appropriate pins). Others are extremely
 sophisticated and fully characterize the electrical properties of
 your cabling. These can easily cost thousands of dollars. Better
 testers typically consist of a pair of units—the actual tester and a
 termination device that creates a signal loop. These devices
 commonly check the following:
	Wire-map (or pin-outs)
	 This checks to see if the corresponding pins on
 each end of a cable are correctly paired. Failure indicates an
 improperly terminated cable, such as crossed wires or faulty
 connections.

	Near End Cross-Talk (NEXT)
	 This is a measure of how much a signal on one
 wire interferes with other signals on adjacent wires. High
 values can indicate improper termination or the wrong type of
 cable or connectors.

	Attenuation
	This measures how much of the original signal is
 lost over the length of the cable. As this is frequency
 dependent, this should be done at a number of different
 frequencies over the range used. It will determine the maximum
 data rates the cable can support. Problem causes include the
 wrong cable type, faulty connectors, and excessive
 lengths.

	Impedance
	This is the opposition to changes in current and
 arises from the resistance and the inductance of the cable.
 Impedance measurements may be useful for finding an impedance
 mismatch that may cause reflected signals at the point where
 cables are joined. It can also be useful in ascertaining
 whether or not you are using the right type of cable.

	Attenuation to Cross-talk Ratio (ARC)
	 This is a comparison of signal strength to
 noise. Values that are too low indicate excessive cable length
 or poor connections.

	Capacitance
	This is the electrical field energy that can be
 stored in the cable. Anomalous values can indicate problems
 with the cable such as shorts or broken wires.

	Length
	 By timing the return of a signal injected onto
 the cable, the length of a cable can be discovered. This can
 reveal how much cable is hidden in the walls, allowing you to
 verify that cable lengths are not exceeding the maximum
 allowed by the applicable standards.

The documentation with your cable tester will provide more
 details in understanding and using these tests.
The better cable testers may be preprogrammed with appropriate
 values for different types of cable, allowing you to quickly
 identify parameters that are out of specification. A good tester
 should also allow you to print or upload measurements into a
 database. This allows you to easily compare results over time to
 identify changes.

Other cable tests

In general, moving cables around is a poor way to test them.
 You may jiggle a nearby poor connection, changing the state of the
 problem. But if you can’t afford a cable tester, you may have little
 choice.
 If the cable in question is not installed in the wall,
 you can try to test it by swapping it with a cable known to be good.
 However, it is usually better to replace a working cable with a
 questionable cable and see if things continue to work rather than
 the other way around. This method is more robust to multiple
 failures. You will immediately know the status of the questionable
 cable. If you replace a questionable cable with a good cable and you
 still have problems, you clearly have a problem other than the
 cable. But you don’t know if it is just a different problem or an
 additional problem. Of course, this approach ties up more
 systems.
 Remember, electrical connectivity does not equate to
 network connectivity. I’ve seen technicians plug different subnets
 into the same hub and then wonder why the computers can’t
 communicate.[1]

Testing Adapters

 While most problems with adapters, such as Ethernet cards,
 are configuration errors, sometimes adapters do fail. Without getting
 into the actual electronics, there are generally three simple tests you
 can make with adapters. However, each has its drawbacks:
	 If you have some doubts about whether the problem is
 in the adapter or network, you might try eliminating the bulk of the
 network from your tests. The easiest approach is to create a
 two-computer network using another working computer. If you use
 coaxial cable, simply run a cable known to be good between the
 computers and terminate each end appropriately. For twisted pair,
 use a crossover cable, i.e., a patch cable with send and receive
 crossed. If all is well, the computers should be able to
 communicate. If they don’t, you should have a pretty clear idea of
 where to look next.
The crossover cable approach is analogous to setting
 up a serial connection using a null modem. You may want to first try
 this method with two working computers just to verify you are using
 the right kind of cable. You should also be sure IP numbers and
 masks are set appropriately on each computer. Clearly, the drawbacks
 with this approach are shuffling computers around and finding the
 right cable. But if you have a portable computer available, the
 shuffling isn’t too difficult.

	 A second alternative is to use the configuration and
 test software provided by the adapter’s manufacturer. If you bought
 the adapter as a separate purchase, you probably already have this
 software. If your adapter came with your computer, you may have to
 go to the manufacturer’s web page and download the software. This
 approach can be helpful, particularly with configuration errors. For
 example, a combination adapter might be configured for coaxial cable
 while you are trying to use it with twisted pair. You may be able to
 change interrupts, DMA channels, memory locations, bus mastering
 configuration, and framing types with this software.
Using diagnostic software has a couple of limitations.
 First, the software may not check for some problems and may
 seemingly absolve a faulty card. Second, the software may not be
 compatible with the operating system you are using. This is
 particularly likely if you are using something like Linux or FreeBSD
 on an Intel platform.

	 The third alternative is to swap the card for one that
 is known to work. This presumes that you have a spare card or are
 willing to remove one from another machine. It also presumes that
 you aren’t having problems that may damage some other component in
 the computer or the new card. Even though I generally keep spare
 cards on hand, I usually leave this test until last whenever
 possible.

Software Testing with ping

 Thus far, I have described ways to examine electrical and
 mechanical problems. The tools described in this section, ping and its variants, focus primarily on the
 software problems and the interaction of software with hardware. When
 these tools successfully communicate with remote systems, you have
 established basic connectivity. Your problem is almost certainly at a
 higher level in your system.
With these tools, you begin with the presumption that your
 hardware is working correctly. If the link light is out on the local
 host, these tools will tell you nothing you don’t already know. But if
 you simply suspect a hardware problem somewhere on your network, these
 tools may help you locate the problem. Once you know the location of the
 problem, you will use the techniques previously described to resolve it.
 These tools can also provide insight when your hardware is marginal or
 when you have intermittent failures.
ping

While there are several useful programs for analyzing
 connectivity, unquestionably ping
 is the most commonly used program. As it is required by the
 IP RFC, it is almost always available as part of the networking
 software supplied with any system. In addition, numerous enhanced
 versions of ping are available at
 little or no cost. There are even web sites that will allow you to run
 ping from their sites.
Moreover, the basic idea has been adapted from IP networks to
 other protocols. For example, Cisco’s implementation of ping has an optional keyword to check
 connectivity among routers using AppleTalk, DECnet, or IPX. ping is nearly universal.
ping was written by Mike Muuss.[2] Inspired by echo location, the name comes from sounds
 sonar makes. The name ping is frequently
 described as an acronym for Packet InterNet Groper. But, according to
 Muuss’s web page, the acronym was applied to the program after the
 fact by someone else.

How ping Works

 It is, in essence, a simple program based on a simple
 idea. (Muuss describes it as a 1000-line hack that was completed in
 about one evening.) One network device sends a request for a reply to
 another device and records the time the request was sent. The device
 receiving the request sends a packet back. When the reply is received,
 the round-trip time for packet propagation can be calculated. The
 receipt of a reply indicates a working connection. This elapsed time
 provides an indication of the length of the path. Consistency among
 repeated queries gives an indication of the quality of the connection.
 Thus, ping answers two basic
 questions. Do I have a connection? How good is that connection? In
 this chapter, we will focus on the first question, returning to the
 second question in the next chapter.
 Clearly, for the program to work, the networking
 protocol must support this query/response mechanism. The ping program is based on Internet Control
 Message Protocol (ICMP), part of the TCP/IP protocol. ICMP was
 designed to pass information about network performance between network
 devices and exchange error messages. It supports a wide variety of
 message types, including this query/response mechanism.
The normal operation of ping relies on two specific ICMP messages,
 ECHO_REQUEST and ECHO_REPLY, but it may respond to ICMP messages other
 than ECHO_REPLY when appropriate. In theory, all TCP/IP-based network
 equipment should respond to an ECHO_REQUEST by returning the packet to
 the source, but this is not always the case.
Simple examples

 The default behavior of ping will vary among implementations.
 Typically, implementations have a wide range of command-line options
 so that the behavior discussed here is generally available. For
 example, implementations may default to sending a single packet, a
 small number of packets, or a continuous stream of packets. They may
 respond with a set of round-trip transmission times or with a simple
 message. The version of ping
 that comes with the Solaris operating system sends, by default, a
 single ICMP packet. It responds that the destination is alive or
 that no answer was received. In this example, an ECHO_REPLY was
 received:
sol1# ping 205.153.63.30
205.153.63.30 is alive
sol1#
In this example, no response was received before the program
 timed out:
sol1# ping www.microsoft.com
no answer from microsoft.com
sol1#
Note that ping can be
 used with an IP number or with a hostname, as shown by these
 examples.
Other implementations will, by default, repeatedly
 send ECHO_REQUESTs until interrupted. FreeBSD is an example:
bsd1# ping www.bay.com
PING www.bay.com (204.80.244.66): 56 data bytes
64 bytes from 204.80.244.66: icmp_seq=0 ttl=112 time=180.974 ms
64 bytes from 204.80.244.66: icmp_seq=1 ttl=112 time=189.810 ms
64 bytes from 204.80.244.66: icmp_seq=2 ttl=112 time=167.653 ms
^C
--- www.bay.com ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 167.653/179.479/189.810/9.107 ms
bsd1#
The execution of the program was interrupted with a Ctrl-C, at
 which point the summary statistics were printed. Without an
 interrupt, the program will continue indefinitely. With the
 appropriate command-line option, -s, similar output can be obtained with
 Solaris.

Interpreting results

 Before I go into the syntax of ping and the ways it might be used, it is
 worth getting a clear understanding of what results might be
 returned by ping. The simplest
 results are seen with Solaris, a message simply stating, in effect,
 that the reply packet was received or was not received. With
 FreeBSD, we receive a great deal more information. It repeatedly
 sends packets and reports results for each packet, as well as
 providing a summary of results. In particular, for each packet we
 are given the size and source of each packet, an ICMP sequence
 number, a Time-To-Live (TTL) count, and the
 round-trip times. (The TTL field is explained later.) Of these, the
 sequence number and round-trip times are the most revealing when
 evaluating basic connectivity.
When each ECHO_REQUEST packet is sent, the time the
 packet is sent is recorded in the packet. This is copied into the
 corresponding ECHO_REPLY packet by the remote host. When an
 ECHO_REPLY packet is received, the elapsed time is calculated by
 comparing the current time to the time recorded in the packet, i.e.,
 the time the packet was sent. This difference, the elapsed time, is
 reported, along with the sequence number and the TTL, which comes
 from the packet’s header. If no ECHO_REPLY packet is received that
 matches a particular sequence number, that packet is presumed lost.
 The size and the variability of elapsed times will depend on the
 number and speed of intermediate links as well as the congestion on
 those links.
An obvious question is “What values are reasonable?”
 Typically, this is highly dependent on the networks you cross and
 the amount of activity on those networks. For example, these times
 are taken from a PPP link with a 28.8-Kbps modem:
64 bytes from 205.153.60.42: icmp_seq=0 ttl=30 time=225.620 ms
64 bytes from 205.153.60.42: icmp_seq=1 ttl=30 time=213.652 ms
64 bytes from 205.153.60.42: icmp_seq=2 ttl=30 time=215.306 ms
64 bytes from 205.153.60.42: icmp_seq=3 ttl=30 time=194.782 ms
64 bytes from 205.153.60.42: icmp_seq=4 ttl=30 time=199.562 ms
...
The following times were for the same link only moments
 later:
64 bytes from 205.153.60.42: icmp_seq=0 ttl=30 time=1037.367 ms
64 bytes from 205.153.60.42: icmp_seq=1 ttl=30 time=2119.615 ms
64 bytes from 205.153.60.42: icmp_seq=2 ttl=30 time=2269.448 ms
64 bytes from 205.153.60.42: icmp_seq=3 ttl=30 time=2209.715 ms
64 bytes from 205.153.60.42: icmp_seq=4 ttl=30 time=2493.881 ms
...
There is nothing wrong here. The difference is that a file
 download was in progress on the link during the second set of
 measurements.
 In general, you can expect very good times if you are
 staying on a LAN. Typically, values should be well under 100 ms and
 may be less than 10 ms. Once you move onto the Internet, values may
 increase dramatically. A coast-to-coast, round-trip time will take
 at least 60 ms when following a mythical straight-line path with no
 congestion. For remote sites, times of 200 ms may be quite good, and
 times up to 500 ms may be acceptable. Much larger times may be a
 cause for concern. Keep in mind these are very rough numbers.
 You can also use ping to calculate a rough estimate of the
 throughput of a connection.
 (Throughput and related concepts are discussed in greater detail in
 Chapter 4.) Send two
 packets with different sizes across the path of interest. This is
 done with the -s option, which
 is described later in this chapter. The difference in times will
 give an idea of how much longer it takes to send the additional data
 in the larger packet. For example, say it takes 30 ms to ping with
 100 bytes and 60 ms with 1100 bytes. Thus, it takes an additional 30
 ms round trip or 15 ms in one direction to send the additional 1000
 bytes or 8000 bits. The throughput is roughly 8000 bits per 15 ms or
 540,000 bps. The difference between two measurements is used to
 eliminate overhead. This is extremely crude. It makes no adjustment
 for other traffic and gives a composite picture for all the links on
 a path. Don’t try to make too much out of these numbers.
 It may seem that the TTL field could be used to
 estimate the number of hops on a path. Unfortunately, this is
 problematic. When a packet is sent, the TTL field is initialized and
 is subsequently decremented by each router along the path. If it
 reaches zero, the packet is discarded. This imposes a finite
 lifetime on all packets, ensuring that, in the event of a routing
 loop, the packet won’t remain on the network indefinitely.
 Unfortunately, the TTL field may or may not be reset at the remote
 machine and, if reset, there is little consistency in what it is set
 to. Thus, you need to know very system-specific information to use
 the TTL field to estimate the number of hops on a path.
 A steady stream of replies with reasonably consistent
 times is generally an indication of a healthy connection. If packets
 are being lost or discarded, you will see jumps in the sequence
 numbers, the missing numbers corresponding to the lost packets.
 Occasional packet loss probably isn’t an indication of any real
 problem. This is particularly true if you are crossing a large
 number of routers or any congested networks. It is particularly
 common for the first packet in a sequence to be lost or have a much
 higher elapsed time. This behavior is a consequence of the need to
 do ARP resolution at each link along the path for the first packet.
 Since the ARP data is cached, subsequent packets do not have this
 overhead. If, however, you see a large portion of the packets being
 lost, you may have a problem somewhere along the path.
 The program will also report duplicate and damaged
 packets. Damaged packets are a cause for real concern. You will need
 to shift into troubleshooting mode to locate the source of the
 problem. Unless you are trying to ping a broadcast address, you should not
 see duplicate packets. If your computers are configured to respond
 to ECHO_REQUESTs sent to broadcast addresses, you will see lots of
 duplicate packets. With normal use, however, duplicate responses
 could indicate a routing loop. Unfortunately, ping will only alert you to the problem;
 its underlying mechanism cannot explain the cause of such
 problems.
In some cases you may receive other ICMP error
 messages. Typically from routers, these can be very informative and
 helpful. For example, in the following, an attempt is made to reach
 a device on a nonexistent network:
bsd1# ping 172.16.4.1
PING 172.16.4.1 (172.16.4.1): 56 data bytes
36 bytes from 172.16.2.1: Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 5031 0 0000 fe 01 0e49 172.16.2.13 172.16.4.1

36 bytes from 172.16.2.1: Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 5034 0 0000 fe 01 0e46 172.16.2.13 172.16.4.1

^C
--- 172.16.4.1 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss
 Since the router has no path to the network, it
 returns the ICMP DESTINATION_HOST_UNREACHABLE message. In general,
 you will receive a Destination
 Host Unreachable
 warning or a Destination Network Unreachable
 warning if the problem is detected on the
 machine where ping is being
 run. If the problem is detected on a device trying to forward a
 packet, you will receive only a Destination
 Host Unreachable warning.
In the next example, an attempt is being made to cross a
 router that has been configured to deny traffic from the
 source:
bsd1# ping 172.16.3.10
PING 172.16.3.10 (172.16.3.10): 56 data bytes
36 bytes from 172.16.2.1: Communication prohibited by filter
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 5618 0 0000 ff 01 0859 172.16.2.13 172.16.3.10

36 bytes from 172.16.2.1: Communication prohibited by filter
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 561b 0 0000 ff 01 0856 172.16.2.13 172.16.3.10

^C
--- 172.16.3.10 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss
 The warning Communication
 prohibited by filter indicates the packets are being
 discarded. Be aware that you may be blocked by filters without
 seeing this message. Consider the following example:
bsd1# ping 172.16.3.10
PING 172.16.3.10 (172.16.3.10): 56 data bytes
^C
--- 172.16.3.10 ping statistics ---
6 packets transmitted, 0 packets received, 100% packet loss
The same filter was used on the router, but it was applied to
 traffic leaving the network rather than inbound traffic. Hence, no
 messages were sent. Unfortunately, ping will often be unable to tell you why
 a packet is unanswered.
While these are the most common ICMP messages you will see,
 ping may display a wide variety
 of messages. A listing of ICMP messages can be found in RFC 792. A
 good discussion of the more common messages can be found in Eric A.
 Hall’s Internet Core Protocols: The Definitive
 Guide. Most ICMP messages are fairly self-explanatory if
 you are familiar with TCP/IP.

Options

A number of options are generally available with
 ping. These vary considerably
 from implementation to implementation. Some of the more germane
 options are described here.
 Several options control the number of or the rate at
 which packets are sent. The -c
 option will allow you to specify the number of packets you want to
 send. For example, ping -c10
 would send 10 packets and stop. This can be very useful if you are
 running ping from a
 script.
 The commands -f
 and -l are used to flood
 packets onto a network. The -f
 option says that packets should be sent as fast as the receiving
 host can handle them. This can be used to stress-test a link or to
 get some indication of the comparative performance of interfaces. In
 this example, the program is run for about 10 seconds on each of two
 different destinations:
bsd1# ping -f 172.16.2.12
PING 172.16.2.12 (172.16.2.12): 56 data bytes
..^C
--- 172.16.2.12 ping statistics ---
27585 packets transmitted, 27583 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.303/0.310/0.835/0.027 ms
bsd1# ping -f 172.16.2.20
PING 172.16.2.20 (172.16.2.20): 56 data bytes
.^C
--- 172.16.2.20 ping statistics ---
5228 packets transmitted, 5227 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.535/1.736/6.463/0.363 ms
In the first case, the destination was a 200-MHz Pentium with
 a PCI adapter. In the second, the destination was a 50-MHz 486 with
 an ISA adapter. It is not surprising that the first computer was
 more than five times faster. But remember, it may not be clear
 whether the limiting factor is the source or the receiver unless you
 do multiple tests. Clearly, use of this option could cripple a host.
 Consequently, the option requires root privileges to run and may not
 be included in some implementations.
The -l option takes a
 count and sends out that many packets as fast as possible. It then
 falls back to normal mode. This could be used to see how the router
 handles a flood of packets. Use of this command is also restricted
 to root.
 The -i option
 allows the user to specify the amount of time in seconds to wait
 between sending consecutive packets. This could be a useful way to
 space out packets for extended runs or for use with scripts. In
 general, the effect of an occasional ping packet is negligible when compared
 to the traffic already on all but the slowest of links. Repeated
 packets or packet flooding can, however, add considerably to traffic
 and congestion. For that reason, you should be very circumspect in
 using any of these options (and perhaps ping in general).
 The amount and form of the data can be controlled to a
 limited extent. The -n option
 restricts output to numeric form. This is useful if you are having
 DNS problems. Implementations also typically include options for
 more detailed output, typically -v for verbose output, and for fewer
 details, typically -q and
 -Q for quiet output.
 The amount and nature of the data in the frame can be
 controlled using the -s and
 -p options. The packet size
 option, -s, allows you to
 specify how much data to send. If set too small, less than 8, there
 won’t be space in the packet for a timestamp. Setting the packet
 size can help in diagnosing a problem caused by path
 Maximum Transmission Unit (MTU) settings (the
 largest frame size that can be sent on the path) or fragmentation
 problems. (Fragmentation is dividing data among multiple frames when
 a single packet is too large to cross a link. It is handled by the
 IP portion of the protocol stack.) The general approach is to
 increase packet sizes up to the maximum allowed to see if at some
 point you have problems. When this option isn’t used, ping defaults to 64 bytes, which may be
 too small a packet to reveal some problems. Also remember that
 ping does not count the IP or
 ICMP header in the specified length so your packets will be 28 bytes
 larger than you specify.
 You could conceivably see MTU problems with protocols,
 such as PPP, that use escaped characters as well.[3] With escaped characters, a single character may be
 replaced by two characters. The expansion of escaped characters
 increases the size of the data frame and can cause problems with MTU
 restrictions or fragmentation.
 The -p option
 allows you to specify a pattern for the data included within the
 packet after the timestamp. You might use this if you think you have
 data-dependent problems. The FreeBSD manpage for ping notes that this sort of problem
 might show up if you lack sufficient “transitions” in your data,
 i.e., your data is all or almost all ones or all or almost all
 zeros. Some serial links are particularly vulnerable to this sort of
 problem.
 There are a number of other options not discussed
 here. These provide control over what interfaces are used, the use
 of multicast packets, and so forth. The flags presented here are
 from FreeBSD and are fairly standard. Be aware, however, that
 different implementations may use different flags for these options.
 Be sure to consult your documentation if things don’t work as
 expected.

Using ping

 To isolate problems using ping, you will want to run it repeatedly,
 changing your destination address so that you work your way through
 each intermediate device to your destination. You should begin with
 your loopback interface. Use either localhost or 127.0.0.1. Next, ping your interface by IP number. (Run
 ifconfig -a if in doubt.) If
 either of these fails, you know that you have a problem with the
 host.
Next, try a host on a local network that you know is
 operational. Use its IP address rather than its hostname. If this
 fails, there are several possibilities. If other hosts are able to
 communicate on the local network, then you likely have problems with
 your connection to the network. This could be your interface, the
 cable to your machine, or your connection to a hub or switch. Of
 course, you can’t rule out configuration errors such as media type
 on the adapter or a bad IP address or mask.
Next, try to reach the same host by name rather than
 number. If this fails, you almost certainly have problems with name
 resolution. Even if you have this problem, you can continue using
 ping to check your network, but
 you will need to use IP addresses.
Try reaching the near and far interfaces of your
 router. This will turn up any basic routing problems you may have on
 your host or connectivity problems getting to your router.
If all goes well here, you are ready to ping remote
 computers. (You will need to know the IP address of the intermediate
 devices to do this test. If in doubt, read the section on traceroute in the next chapter.) Realize,
 of course, that if you start having failures at this point, the
 problem will likely lie beyond your router. For example, your ICMP
 ECHO_REQUEST packets may reach the remote machine, but it may not
 have a route to your machine to use for the ICMP ECHO_REPLY
 packets.
When faced with failure at this point, your response will
 depend on who is responsible for the machines beyond your router. If
 this is still part of your network, you will want to shift your
 tests to machines on the other side of the router and try to work in
 both directions.
If these machines are outside your responsibility or control,
 you will need to enlist the help of the appropriate person. Before
 you contact this person, however, you should collect as much
 information as you can. There are three things you may want to do.
 First, go back to using IP numbers if you have been using names. As
 said before, if things start working, you have a name resolution
 problem.
Second, if you were trying to ping a device several hops
 beyond your router, go back to closer machines and try to zero in on
 exactly where you first encountered the problem.
Finally, be sure to probe from more than one machine. While
 you may have a great deal of confidence in your local machine at
 this point, your discussion with the remote administrator may go
 much more smoothly if you can definitely say that you are seeing
 this problem from multiple machines instead of just one. In general,
 this stepwise approach is the usual approach for this type of
 problem.
Sometimes, you may be more interested in investigating
 connectivity over time. For example, you might have a connection
 that seems to come and go. By running ping in the background or from a script,
 you may be able to collect useful information. For example, with
 some routing protocols, updates have a way of becoming synchronized,
 resulting in periodic loading on the network. If you see increased
 delays, for example every 30 seconds, you might be having that sort
 of problem. Or, if you lose packets every time someone uses the
 elevator, you might look at the path your cable takes.
If you are looking at performance over a long period of time,
 you will almost certainly want to use the -i option to space out your packets in a
 more network- friendly manner. This is a reasonable approach to take
 if you are experiencing occasional outages and need to document the
 time and duration of the outages. You should also be aware that over
 extended periods of time, you may see changes in the paths the
 packets follow.

Problems with ping

Up to this point, I have been describing how ping is normally used. I now describe some
 of the complications faced when using ping.
 First, the program does not exist in isolation, but
 depends on the proper functioning of other elements of the network. In
 particular, ping usually depends
 upon ARP and DNS. As previously noted, if you are using a hostname
 rather than an IP address as your destination, the name of the host
 will have to be resolved before ping can send any packets. You can bypass
 DNS by using IP addresses.
 It is also necessary to discover the host’s link-level
 address for each host along the path to the destination. Although this
 is rarely a problem, should ARP resolution fail, then ping will fail. You could avoid this
 problem, in part, by using static ARP entries to ensure that the ARP
 table is correct. A more common problem is that the time reported by
 ping for the first packet sent
 will often be distorted since it reflects both transit times and ARP
 resolution times. On some networks, the first packet will often be
 lost. You can avoid this problem by sending more than one packet and
 ignoring the results for the first packet.
The correct operation of your network will depend on
 considerations that do not affect ping. In such situations, ping will work correctly, but you will
 still have link problems. For example, if there are problems with the
 configuration of the path MTU, smaller ping packets may zip through the network
 while larger application packets may be blocked. S. Lee Henry
 described a problem in which she could ping remote systems but could not download
 web pages.[4] While her particular problem was highly unusual, it does
 point out that a connection can appear to be working, but still have
 problems.
The opposite can be true as well. Often ping will fail when the connection works
 for other uses. For various reasons, usually related to security, some
 system administrators may block ICMP packets in general or
 ECHO_REQUEST packets in particular. Moreover, this practice seems to
 be increasing. I’ve even seen a site block ping traffic at its DNS server.
Security and ICMP

 Unfortunately, ping in particular, and ICMP packets in
 general, have been implicated in several recent denial-of-service
 attacks. But while these attacks have used ping, they are not inherently problems
 with ping. Nonetheless, network
 administrators have responded as though ping was the problem (or at least the
 easiest way to deal with the problem), and this will continue to
 affect how and even if ping can
 be used in some contexts.

Smurf Attacks

 In a Smurf Attack, ICMP
 ECHO_REQUEST packets are sent to the broadcast address of a network.
 Depending on how hosts are configured on the network, some may
 attempt to reply to the ECHO_REQUEST. The resulting flood of
 responses may degrade the performance of the network, particularly
 at the destination host.
 With this attack, there are usually three parties
 involved—the attacker who generates the original request; an
 intermediary, sometimes called a reflector or multiplier, that
 delivers the packet onto the network; and the victim. The attacker
 uses a forged source address so that the ECHO_REPLY packets are
 returned, not to the attacker, but to a “spoofed” address, i.e., the
 victim. The intermediary may be either a router or a compromised
 host on the destination network.
 Because there are many machines responding to a single
 request, little of the attacker’s bandwidth is used, while much of
 the victim’s bandwidth may be used. Attackers have developed tools
 that allow them to send ECHO_REQUESTs to multiple intermediaries at
 about the same time. Thus, the victim will be overwhelmed by
 ECHO_REPLY packets from multiple sources. Notice also that
 congestion is not limited to just the victim but may extend through
 its ISP all the way back to the intermediaries’ networks.
 The result of these attacks is that many sites are now
 blocking ICMP ECHO_REQUEST traffic into their network. Some have
 gone as far as to block all ICMP traffic. While understandable, this
 is not an appropriate response. First, it blocks legitimate uses of
 these packets, such as checking basic connectivity. Second, it may
 not be effective. In the event of a compromised host, the
 ECHO_REQUEST may originate within the network. At best, blocking
 pings is only a temporary solution.
A more appropriate response requires taking several steps.
 First, you should configure your routers so they will not forward
 broadcast traffic onto your network from other networks. How you do
 this will depend on the type of router you have, but solutions are
 available from most vendors.
Second, you may want to configure your hosts so they
 do not respond to ECHO_REQUESTs sent to broadcast addresses. It is
 easy to get an idea of which hosts on your network respond to these
 broadcasts. First, examine your ARP table, then ping your broadcast
 address, and then look at your ARP table again for new
 entries.[5]
Finally, as a good network citizen, you should install
 filters on your access router to prevent packets that have a source
 address not on your network from leaving your network. This limits
 not only Smurf Attacks but also other attacks based on spoofed
 addresses from originating on your network. These filters should
 also be applied to internal routers as well as access routers. (This
 assumes you are providing forwarding for other networks!)
If you follow these steps, you should not have to disable ICMP
 traffic. For more information on Smurf Attacks, including
 information on making these changes, visit http://www.cert.org/advisories/CA-1998-01.html. You
 might also look at RFC 2827.

Ping of Death

 The specifications for TCP/IP have a maximum packet
 size of 65536 octets or bytes. Unfortunately, some operating systems
 behave in unpredictable ways if they receive a larger packet.
 Systems may hang, crash, or reboot. With a Ping of
 Death (or Ping o’ Death)
 Attack, the packet size option for ping is used to send a slightly oversized
 packet to the victim’s computer. For example, on some older
 machines, the command ping -s 65510
 172.16.2.1 (use -l rather than
 -s on old Windows systems) will send a packet,
 once headers are added, that causes this problem to the host
 172.16.2.1. (Admittedly, I have
 some misgivings about giving an explicit command, but this has been
 widely published and some of you may want to test your
 systems.)
This is basically an operating system problem. Large packets
 must be fragmented when sent. The destination will put the pieces in
 a buffer until all the pieces have arrived and the packet can be
 reassembled. Some systems simply don’t do adequate bounds checking,
 allowing memory to be trashed.
Again, this is not really a problem with ping. Any oversized packet, whether it is
 an ICMP packet, TCP packet, or UDP packet, will cause the same
 problem in susceptible operating systems. (Even IPX has been
 mentioned.) All ping does is
 supply a trivial way to exploit the problem. The correct way to deal
 with this problem is to apply the appropriate patch to your
 operating system. Blocking ICMP packets at your router will not
 protect you from other oversized packets. Fortunately, most systems
 have corrected this problem, so you are likely to see it only if you
 are running older systems.[6]

Other problems

Of course, there may be other perceived problems with
 ping. Since it can be used to
 garner information about a network, it can be seen as a threat to
 networks that rely on security through obscurity. It may also be
 seen as generating unwanted or unneeded traffic. For these and
 previously cited reasons, ICMP traffic is frequently blocked at
 routers.
 Blocking is not the only difficulty that routers may
 create. Routers may assign extremely low priorities to ICMP traffic
 rather than simply block such traffic. This is particularly true for
 routers implementing quality of service protocols. The result can be
 much higher variability in traffic patterns. Network
 Address Translation (NAT) can present other difficulties.
 Cisco’s implementation has the router responding to ICMP packets for
 the first address in the translation pool regardless of whether it
 is being used. This might not be what you would have
 expected.
In general, blocking ICMP packets, even just ECHO_REQUEST
 packets, is not desirable. You lose a valuable source of information
 about your network and inconvenience users who may have a legitimate
 need for these messages. This is often done as a stopgap measure in
 the absence of a more comprehensive approach to security.
Interestingly, even if ICMP packets are being blocked,
 you can still use ping to see
 if a host on the local subnet is up. Simply clear the ARP table
 (typically arp -ad), ping the
 device, and then examine the ARP table. If the device has been added
 to the ARP table, it is up and responding.
One final note about ping. It should be obvious, but ping checks only connectivity, not the
 functionality of the end device. During some network changes, I once
 used ping to check to see if a
 networked printer had been reconnected yet. When I was finally able
 to ping the device, I sent a job to the printer. However, my system
 kept reporting that the job hadn’t printed. I eventually got up and
 walked down the hall to the printer to see what was wrong. It had
 been reconnected to the network, but someone had left it offline. Be
 warned, it is very easy to read too much into a successful
 ping.

Alternatives to ping

Variants to ping
 fall into two general categories, those that add to ping’s functionality and those that are
 alternatives to ping. An example
 of the first is fping, and an
 example of the second is echoping.
fping

 Written by Roland Schemers of Stanford University,
 fping extends ping to support multiple hosts in
 parallel. Typical output is shown in this example:
bsd1# fping 172.16.2.10 172.16.2.11 172.16.2.12 172.16.2.13 172.16.2.14
172.16.2.13 is alive
172.16.2.10 is alive
172.16.2.12 is alive
172.16.2.14 is unreachable
172.16.2.11 is unreachable
Notice that five hosts are being probed at the same time and
 that the results are reported in the order replies are
 received.
This works the same way ping works, through sending and receiving
 ICMP messages. It is primarily designed to be used with files.
 Several command-line options are available, including the -f option for reading a list of devices
 to probe from a file and the -u
 option used to print only those systems that are unreachable. For
 example:
bsd1# fping -u 172.16.2.10 172.16.2.11 172.16.2.12 172.16.2.13 172.16.2.14
172.16.2.14
172.16.2.11
The utility of this form in a script should be
 self-evident.

echoping

Several tools similar to ping don’t use ICMP ECHO_REQUEST and
 ECHO_REPLY packets. These may provide an alternative to ping in some contexts.
One such program is echoping. It is very similar to ping. It works by sending packets to one
 of several services that may be offered over TCP and UDP—ECHO,
 DISCARD, CHARGEN, and HTTP. Particularly useful when ICMP messages
 are being blocked, echoping may
 work where ping fails.
 If none of these services is available, echoping cannot be used. Unfortunately,
 ECHO and CHARGEN have been used in the Fraggle
 denial of service attacks. By sending the output from CHARGEN (a
 character-generation protocol) to ECHO, the network can be flooded.
 Consequently, many operating systems are now shipped with these
 services disabled. Thus, the program may not be as useful as
 ping. With Unix, these services
 are controlled by inetd and
 could be enabled if desired and if you have access to the
 destination machine. But these services have limited value, and you
 are probably better off disabling them.
In this example, I have previously enabled ECHO on
 lnx1:
bsd1# echoping -v lnx1

This is echoping, version 2.2.0.

Trying to connect to internet address 205.153.61.177 to transmit 256 bytes...
Connected...
Sent (256 bytes)...
256 bytes read from server.
Checked
Elapsed time: 0.004488 seconds
 This provides basically the same information as
 ping. The -v option simply provides a few more
 details. The program defaults to TCP and ECHO. Command-line options
 allow UDP packet or the other services to be selected.
When ping was first
 introduced in this chapter, we saw that www.microsoft.com could not be reached by
 ping. Nor can it be reached
 using echoping in its default
 mode. But, as a web server, port 80 should be available. This is in
 fact the case:
bsd1# echoping -v -h /ms.htm www.microsoft.com:80

This is echoping, version 2.2.0.

Trying to connect to internet address 207.46.130.14 (port 80) to transmit 100 bytes...
Connected...
Sent (100 bytes)...
2830 bytes read from server.
Elapsed time: 0.269319 seconds
Clearly, Microsoft is blocking ICMP packets. In this example,
 we could just as easily have turned to our web browser. Sometimes,
 however, this is not the case.
An obvious question is “Why would you need such a tool?” If
 you have been denied access to a network, should you be using such
 probes? On the other hand, if you are responsible for the security
 of a network, you may want to test your configuration. What can
 users outside your network discover about your network? If this is
 the case, you’ll need these tools to test your network.

arping

 Another interesting and useful variant of ping is arping. arping uses ARP requests and replies
 instead of ICMP packets. Here is an example:
bsd2# arping -v -c3 00:10:7b:66:f7:62
This box: Interface: ep0 IP: 172.16.2.236 MAC address: 00:60:97:06:22:22
ARPING 00:10:7b:66:f7:62
60 bytes from 172.16.2.1 (00:10:7b:66:f7:62): icmp_seq=0
60 bytes from 172.16.2.1 (00:10:7b:66:f7:62): icmp_seq=1
60 bytes from 172.16.2.1 (00:10:7b:66:f7:62): icmp_seq=2

--- 00:10:7b:66:f7:62 statistics ---
3 packets transmitted, 3 packets received, 0% unanswered
2 packets transmitted, 2 packets received, 0% unanswered
 In this case, I’ve used the MAC address, but the IP
 address could also be used. The -v option is for verbose, while -c3 limits the run to three probes.
 Verbose doesn’t really add a lot to the default output, just the
 first line identifying the source. If you just want the packets
 sent, you can use the -q, or
 quiet, option.
This tool has several uses. First, it is a way to find
 which IP addresses are being used. It can also be used to work
 backward, i.e., to discover IP addresses given MAC addresses. For
 example, if you have captured non-IP traffic (e.g., IPX, etc.) and
 you want to know the IP address for the traffic’s source, you can
 use arping with the MAC
 address. If you just want to check connectivity, arping is also a useful tool. Since ARP
 packets won’t be blocked, this should work even when ICMP packets
 are blocked. You could also use this tool to probe for ARP entries
 in a router. Of course, due to the nature of ARP, there is not a lot
 that this tool can tell you about devices not on the local
 network.

Other programs

There are other programs that can be used to check
 connectivity. Two are described later in this book. nmap is described in Chapter 6, and hping is described in Chapter 9. Both are versatile
 tools that can be used for many purposes.
A number of ping variants
 and extended versions of ping
 are also available, both freely and commercially. Some extend
 ping’s functionality to the
 point that the original functionality seems little more than an
 afterthought. Although only a few examples are described here, don’t
 be fooled into believing that these are all there are. A casual web
 search should turn up many, many more.
Finally, don’t forget the obvious. If you are interested in
 checking only basic connectivity, you can always try programs like
 telnet or your web browser.
 While this is generally not a recommended approach, each problem is
 different, and you should use whatever works. (For a discussion of
 the problems with this approach, see Using Applications to Test
 Connectivity.)
Using Applications to Test Connectivity
 One all-too-common way of testing a new installation
 is to see if networking applications are working. The cable is
 installed and connected, the TCP/IP stack is configured, and then
 a web browser is started to see if the connection is working. If
 you can hit a couple of web sites, then everything is alright and
 no further testing is needed.
This is understandably an extremely common way to test a
 connection. It can be particularly gratifying to see a web page
 loading on a computer you have just connected to your network. But
 it is also an extremely poor way to test a connection.
One problem is that the software stack you use to test the
 connection is designed to hide problems from users. If a packet is
 lost, the stack will transparently have the lost packet resent
 without any indication to the user. You could have a connection
 that is losing 90% of its packets. The problem would be
 immediately obvious when using ping. But with most applications, this
 would show up only as a slow response. Other problems include
 locally cached information or the presence of proxy servers on the
 network.
Unfortunately, web browsers seem to be the program of choice
 for testing a connection. This, of course, is the worst possible
 choice. The web’s slow response is an accepted fact of life. What
 technician is going to blame a slow connection on his shoddy
 wiring when the alternative is to blame the slow connection on the
 Web? What technician would even consider the possibility that a
 slow web response is caused by a cable being too close to a
 fluorescent light?
The only thing testing with an application will really tell
 you is whether a connection is totally down. If you want to know
 more than that, you will have to do real testing.

Microsoft Windows

 The various versions of Windows include implementations of
 ping. With the Microsoft
 implementation, there are a number of superficial differences in syntax
 and somewhat less functionality. Basically, however, it works pretty
 much as you might expect. The default is to send four packets, as shown
 in the two following examples. In the first, we successfully ping the
 host www.cabletron.com:
C:\>ping www.cabletron.com

Pinging www.cabletron.com [204.164.189.90] with 32 bytes of data:

Reply from 204.164.189.90: bytes=32 time=100ms TTL=239
Reply from 204.164.189.90: bytes=32 time=100ms TTL=239
Reply from 204.164.189.90: bytes=32 time=110ms TTL=239
Reply from 204.164.189.90: bytes=32 time=90ms TTL=239

C:\>
In the next example, we are unable to reach www.microsoft.com for reasons previously
 explained:
C:\>ping www.microsoft.com

Pinging microsoft.com [207.46.130.149] with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Note that this is run in a DOS window. If you use ping without an argument, you will get a
 description of the basic syntax and a listing of the various
 options:
C:\>ping

Usage: ping [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS]
 [-r count] [-s count] [[-j host-list] | [-k host-list]]
 [-w timeout] destination-list

Options:
 -t Ping the specifed host until interrupted.
 -a Resolve addresses to hostnames.
 -n count Number of echo requests to send.
 -l size Send buffer size.
 -f Set Don't Fragment flag in packet.
 -i TTL Time To Live.
 -v TOS Type Of Service.
 -r count Record route for count hops.
 -s count Timestamp for count hops.
 -j host-list Loose source route along host-list.
 -k host-list Strict source route along host-list.
 -w timeout Timeout in milliseconds to wait for each reply.
Notice that the flooding options, fortunately, are absent and that
 the -t option is used to get an
 output similar to that used in most of our examples. The implementation
 does not provide a summary at the end, however.
 In addition to Microsoft’s implementation of ping, numerous other versions—as well as more
 generic tools or toolkits that include a ping-like utility—are available. Most are
 free or modestly priced. Examples include tjping, trayping, and winping, but many more are available,
 including some interesting variations. For example, trayping monitors a connection in the
 background. It displays a small heart in the system tray as long as the
 connection is up. As availability changes frequently, if you need
 another version of ping, search the
 Web.

[1] There are also circumstances in which this will work, but
 mixing subnets this way is an extremely bad idea.

[2] For more on the background of ping as well as a review of the book
 The Story About Ping, an alleged allegory of
 the ping program, visit
 Muuss’s web page at http://ftp.arl.mil/~mike/ping.html.

[3] Generally there are better ways to deal with problems with
 PPP. For more information, see Chapter 15 in Using and
 Managing PPP, by Andrew Sun.

[4] “Systems Administration: You Can’t Get There from Here,”
 Server/Workstation Expert, May 1999. This
 article can be found in PDF format at http://sw.expert.com/C4/SE.C4.MAY.99.pdf.

[5] At one time, you could test your site by going to http://www.netscan.org, but this site seems to
 have disappeared.

[6] For more information on this attack, see http://www.cert.org/advisories/CA-1996-26.html.

Chapter 8. Performance Measurement Tools

Everything on your network may be working, but using it can
 still be a frustrating experience. Often, a poorly performing system is
 worse than a broken system. As a user on a broken system, you know when to
 give up and find something else to do. And as an administrator, it is
 usually much easier to identify a component that isn’t working at all than
 one that is still working but performing poorly. In this chapter, we will
 look at tools and techniques used to evaluate network performance.
This chapter begins with a brief overview of the types of tools
 available. Then we look at ntop, an
 excellent tool for watching traffic on your local network. Next, I
 describe mrtg, rrd, and cricket—tools for collecting traffic data from
 remote devices over time. RMON, monitoring extensions to SNMP, is next. We
 conclude with tools for use on Microsoft Windows systems.
Don’t overlook the obvious! Although we will look at tools
 for measuring traffic, user dissatisfaction is probably the best single
 indicator of the health of your network. If users are satisfied, you
 needn’t worry about theoretical problems. And if users are screaming at
 your door, then it doesn’t matter what the numbers prove.
What, When, and Where

Network performance will depend on many things—on the
 applications you are using and how they are configured, on the hosts
 running these applications, on the networking devices, on the structure
 and design of the network as a whole, and on how these pieces interact
 with one another. Even though the focus of this chapter is restricted to
 network performance, you shouldn’t ignore the other pieces of the
 puzzle. Problems may arise from the interaction of these pieces, or a
 problem with one of the pieces may look like a problem with another
 piece. A misconfigured or poorly designed application can significantly
 increase the amount of traffic on a network. For example, Version 1.1 of
 the HTTP protocol provides for persistent connections that can
 significantly reduce traffic. Not using this particular feature is
 unlikely to be a make or break issue. My point is, if you look only at
 the traffic on a network without considering software configurations,
 you may seem to have a hardware capacity problem when a simple change in
 software might lessen the problem and, at a minimum, buy you a little
 more time.
 This chapter will focus on tools used to collect
 information on network performance. The first step in analyzing
 performance is measuring traffic. In addition to problem identification
 and resolution, this should be done as part of capacity planning and
 capacity management (tuning). Several books listed in Appendix B provide general
 discussions of application and host performance analysis.
Of the issues related to measuring network traffic, the
 most important ones are what to measure, how often, and where. Although
 there are no simple answers to any of these questions, what to measure
 is probably the hardest of the three. It is extremely easy to end up
 with so much data that you don’t have time to analyze it. Or you may
 collect data that doesn’t match your needs or that is in an unusable
 format. If you keep at it, eventually you will learn from experience
 what is most useful. Take the time to think about how you will use the
 data before you begin. Be as goal directed as possible. Just realize
 that, even with the most careful planning, when faced with a new,
 unusual problem, you’ll probably think of something you wish you had
 been measuring.
If you are looking at the performance of your system over
 time, then data at just one point in time will be of little value. You
 will need to collect data periodically. How often you collect will
 depend on the granularity or frequency of the events you want to watch.
 For many tasks, the ideal approach is one that periodically condenses
 and eventually discards older data.
 Unless your network is really unusual, the level of usage
 will vary with the time of day, the day of the week, and the time of the
 year. Most performance related problems will be most severe at the
 busiest times. In telephony, the hour when traffic is heaviest is known
 as the busy hour, and planning centers around
 traffic at this time. In a data network, for example, the busy hour may
 be first thing in the morning when everyone is logging on and checking
 their email, or it could be at noon when everyone is web surfing over
 their lunch hour.
 Knowing usage patterns can simplify data collection since
 you’ll need to do little collecting when the network is underutilized.
 Changes in usage patterns can indicate fundamental changes in your
 network that you’ll want to be able to identify and explain. Finally,
 knowing when your network is least busy should give you an idea of the
 most convenient times to do maintenance.
 I have divided traffic-measurement tools into three rough
 categories based on where they are used within a network. Tools that
 allow you to capture traffic coming into or going out of a particular
 machine are called host-monitoring tools. Tools
 that place an interface in promiscuous mode and allow you to capture all
 the traffic at an interface are called
 point-monitoring tools. Finally, tools that build a
 global picture of network traffic by querying other hosts (which are in
 turn running either host-monitoring or point-monitoring tools) are
 called network-monitoring tools. Both host
 monitoring and point monitoring should have a minimal impact on network
 traffic. With the exception of DNS traffic, they shouldn’t be generating
 additional traffic. This is not true for network-monitoring
 tools.
 Because of their roles within a network, devices such as
 switches and routers don’t easily fit into this classification scheme.
 If a single switch interconnects all devices in a subnet, then it will
 see all the local traffic. If, however, multiple switches are used and
 you aren’t mirroring traffic, each switch will see only part of the
 traffic. Routers will see only traffic moving between networks. While
 this is ideal for measuring traffic between local and remote devices, it
 is not helpful in understanding strictly local traffic. The problem
 should be obvious. If you monitor the wrong device, you may easily miss
 bottlenecks or other problems. Before collecting data, you need to
 understand the structure of your network so you can understand what
 traffic is actually being seen. This is one reason the information in
 Chapter 6, is
 important.
Finally, you certainly won’t want to deal with raw data on a
 routine basis. You will want tools that present the data in a useful
 manner. For time-series data, graphs and summary statistics are usually
 the best choice.

Host-Monitoring Tools

 We have already discussed host-monitoring tools in several
 different parts of this book, particularly Chapter 2 and Chapter 4. An obvious example of
 a host-monitoring tool is netstat.
 You will recall that the -i option
 will give a cumulative picture of the traffic into and out of a
 computer.
 Although easy to overlook, any tool that logs traffic is a
 host-monitoring tool of sorts. These are generally not too useful after
 the fact, but you may be able to piece together some information from
 them. A better approach is to configure the software to collect what you
 need. Don’t forget applications, like web servers, that collect data.
 Accounting tools and security tools provide other possibilities. Tools
 like ipfw, ipchains, and tcpwrappers all support logging. (Log files
 are discussed in greater detail in Chapter 11.)
Host-monitoring tools can be essential in diagnosing problems
 related to host performance, but they give very little information about
 the performance of the network as a whole. Of course, if you have this
 information for every host, you’ll have the data you need to construct a
 complete picture. Constructing that picture is another story.

Point-Monitoring Tools

 A point-monitoring tool puts your network interface in
 promiscuous mode and allows you to collect information on all traffic
 seen at the computer’s interface. The major limitation to point
 monitoring is it gives you only a local view of your network. If your
 focus is on host performance, this is probably all that you will need.
 Or, if you are on a shared media network such as a hub, you will see all
 of the local traffic. But, if you are on a switched network, you will
 normally be able to see only traffic to or from the host or broadcast
 traffic. And as more and more networks shift to switches for efficiency,
 this problem will worsen.
 The quintessential point-monitoring tools are network
 sniffers. In Chapter 5, we
 saw several utilities that capture traffic and generate traffic
 summaries. These included tcp-reduce, tcptrace, and xplot. In general, sniffers are not really
 designed for traffic measurement—they are too difficult to use for this
 purpose, provide too much information, and provide information in a
 format ill-suited to this purpose. But if you really want to understand
 a problem, packet capture gives you the most complete picture, if you
 can wade through all the data.
ntop

ntop , the work of Luca Deri, is an excellent example of just
 how useful a point-monitoring tool can be. ntop is usually described as the network
 equivalent of the Unix utility top. Actually, it is a lot more.
ntop is based on the
 libpcap library that originated
 at the Lawrence Berkeley National Laboratory and on which tcpdump is based. It puts the network
 interface in promiscuous mode so that all traffic at the interface is
 captured. It will then begin to collect data, periodically creating
 summary statistics. (It will also use lsof and other plug-ins to collect data if
 available.)
ntop can be run in two
 modes: as a web-based utility using a built-in web server or in
 interactive mode, i.e., as a text-based application on a host. It
 closely resembles top when run in
 interactive mode. This was the default mode with earlier versions of
 ntop but is now provided by a
 separate command, intop.
 Normally, you will want to use a separate window when using
 interactive mode.
Interactive mode

Here is an example of the output with intop :
$<50> intop 0.0.1 (Sep 19 2000) listening on [eth0]
379 Pkts/56.2 Kb [IP 50.5 Kb/Other 5.7 Kb] Thpt: 6.1 Kbps/24.9 Kbps
 Host Act -Rcv-Rcvd- Sent TC-TCP- UDP IC$
 sloan B 69.0% 16.7% 38.8 Kb 0 0
 lnx1a B 16.7% 69.4% 9.4 Kb 0 0
 rip2-routers.mcast.net R 3.7% 0.0% 0 2.1 Kb 0
 172.16.3.1 B 2.1% 6.5% 0 0 0
 Cisco CDPD/VTP [MAC] I 4.7% 0.0% 0 0 0
 172.16.3.3 B 2.2% 6.1% 0 0 0
 Interpretation of the data is straightforward. The top
 two lines show the program name and version, date, interface, number
 of packets, total traffic, and throughput. The first column lists
 hosts by name or IP number. The second column reflects activity
 since the last update—Idle, Send, Receive, or Both. The next two
 columns are the amount of traffic sent and received, while the last
 two columns break traffic down as TCP, UPD, or ICMP traffic.
intop should be started with the -i option to specify which interface to
 use. For example:
lnx1# intop -i eth0
 If your computer is multihomed, you can specify
 several interfaces on the command line, each with a separate
 -i. Once started, it prints an
 annoying 20 lines or so of general information about the program and
 then gives you a prompt. At this point, you can enter ? to find out what services are
 available:
intop@eth0> ?
Commands enclosed in '<>' are not yet implemented.
Commands may be abbreviated. Commands are:

 ? <warranty> filter swap nbt
 help <copying> sniff top <dump>
 exit history uptime lsdev <last>
 quit open <hash> hosts <nslookup>
 prompt <close> info arp
intop@eth0>
 As you can see, a number of commands are planned but
 had not been implemented at the time this was written. Most are
 exactly what you would expect. You use the top command to get a display like the one
 just shown. The info command
 reports the interface and number of packets captured. With the
 filter command, you can set
 packet-capture filters. You use the same syntax as explained in
 Chapter 5 with
 tcpdump. (Filters can also be
 specified on the command line when intop is started.) The lsdev command lists interfaces. The
 swap command is used to jump
 between data collection on two different interfaces.
 You can change how the data is displayed on-the-fly
 using your keyboard. For example, the d key will allow you to toggle between
 showing all hosts or only active hosts. The l key toggles between showing or not
 showing only local hosts. The p
 key can be used to show or suppress showing data as percentages. The
 y key is used to change the
 sorting order among the columns. The n key is used to toggle between hostnames
 and IP addresses. The r key can
 be used to reset or zero statistics. The q key is used to stop the program.

Web mode

 Actually, you’ll probably prefer web mode to
 interactive mode, as it provides considerably more information and a
 simpler interface. Since ntop
 uses a built-in web server, you won’t need to have a separate web
 server running on your system. By default, ntop uses port 3000, so this shouldn’t
 interfere with any existing web servers. If it does, or if you are
 paranoid about using default ports, you can use the -w option to select a different port. The
 only downside is that the built-in web server uses frames and
 displays data as tables, which still seems to confuse some browsers,
 particularly when printing.
There are a number of options, some of which are discussed
 next, but the defaults work well enough to get you started. Once you
 start ntop, point your browser
 to the machine and port it runs on. Figure 8-1 shows what
 the initial screen looks like.
[image: ntop’s home page]

Figure 8-1. ntop’s home page

As you can see, on startup ntop provides you with a brief
 description of the program in the larger frame to the right. The
 real area of interest is the menu on the left. By clicking on the
 triangles, each menu expands to give you a number of choices. This
 is shown to the left in Figure 8-2.
[image: ntop’s All Protocols page]

Figure 8-2. ntop’s All Protocols page

 Figure
 8-2 shows the All Protocols page, which groups traffic by
 protocol and host. This is available for both received and
 transmitted data. A number of statistics for other protocols—such as
 AppleTalk, OSPF, NetBIOS, and IGMP—have scrolled off the right of
 this window. You can click on the column header to sort the data
 based on that column. By default, this screen will be updated every
 two minutes, but this can be changed.
 The IP option displays received or transmitted data
 grouped by individual IP protocols such as FTP, HTTP, DNS, and
 Telnet. The Throughput option gives a table organized by host and by
 throughput, average throughput, and peak throughput for both bits
 and packets.
 The Stats submenu offers a number of options.
 Multicast gives a table of multicast traffic. Traffic provides you
 with a number of tables and graphs showing how traffic breaks down.
 Figure 8-3 shows
 one of these graphs.
[image: ntop’s Traffic page under Stats]

Figure 8-3. ntop’s Traffic page under Stats

 Figures and tables break down traffic by broadcast
 versus unicast versus multicast packets, by packet size categories,
 by IP versus non-IP traffic, by protocol category such as TCP versus
 UDP versus AppleTalk versus Other, and by application protocols such
 as FTP versus Telnet. Either bar graphs or pie charts are used to
 display the data. The tables give the data in both kilobytes and
 percentages. These graphs can save you a lot of work in analyzing
 data and discovering how your network is being used.
 The Host option under Stats gives basic host
 information including hostnames, IP addresses, MAC addresses for
 local hosts, transmit bandwidth, and vendors for MAC addresses when
 known. By clicking on a hostname, additional data will be displayed
 as shown in Figure
 8-4.
[image: Host information]

Figure 8-4. Host information

The host shown here is on a different subnet from the
 host running ntop, so less
 information is available. For example, there is no way for ntop to discover the remote host’s MAC
 address or to track traffic to or from the remote host that doesn’t
 cross the local network. Since this displays connections between
 hosts, its use has obvious privacy implications.
 The Throughput option gives a graph of the average
 throughput over the last hour. Domain gives a table of traffic
 grouped by domain. Plug-ins provide a way to extend the
 functionality of ntop by adding
 other applications. Existing plug-ins provide support for such
 activities as tracking new ARP entries, NFS traffic, and WAP traffic
 and tracking and classifying ICMP traffic.
 An important issue in capacity planning is what
 percentage of traffic is purely local and what percentage has a
 remote network for its source or destination (see Local Versus Remote
 Traffic). The IP Traffic menu gives you options to collect
 this type of information. The Distribution option on the IP
 Protocols menu gives you plots and tables for local and remote IP
 traffic. For example, Figure 8-5 shows a
 graph and tables for local and remote-to-local traffic. There is a
 local-to-remote table that is not shown. The Usage option shows IP
 subnet usage by port. Sessions shows active TCP sessions, and
 Routers identifies routers on the local subnet.
[image: Measuring local and remote traffic]

Figure 8-5. Measuring local and remote traffic

Local Versus Remote Traffic
 Before the Internet became popular, most network
 traffic stayed on the local network. This was often summarized as
 the 90-10 Rule (or sometimes the 80-20 Rule), a heuristic that
 says that roughly 90% of network traffic will stay on the local
 network. The Internet has turned the old 90-10 Rule on its head by
 providing a world of reasons to leave the local network; now most
 traffic does just that. Today the 90-10 Rule says that 90% of
 traffic on the local network will have a remote site as its source
 or destination.
Clearly, the 90-10 Rule is nothing more than a very general
 rule of thumb. It may be an entirely inappropriate generalization
 for your network. But knowing the percentage of local and remote
 traffic can be useful in understanding your network in a couple of
 ways. First, whatever the numbers, they really shouldn’t be
 changing a lot over time unless something fundamental is changing
 in the way your network is being used. This is something you’ll
 want to know about.
Second, local versus remote traffic provides a quick sanity
 check for network design. If 90% of your traffic is entering or
 leaving your network over a 1.544-Mbps T1 line, you should
 probably think very carefully about why you need to upgrade your
 backbone to gigabit speeds.

 The last menu, Admin, is used to control the operation
 of ntop. Switch NIC allows you
 to capture on a different interface, and Reset Stats zeros all
 cumulative statistics. Shutdown shuts down ntop. Users and URLs allow you to control
 access to ntop.
A number of command-line options allow you to control
 how ntop runs. These can be
 listed with the -h option. As
 noted previously, -w is used to
 change the port it listens to, and -i allows you to specify which interface
 to listen to. -r sets the delay
 between screen updates in seconds. The -n option is used to specify numeric IP
 addresses rather than hostnames. Consult the documentation for other
 options.
ntop has other features not discussed here. It can be used
 as a lightweight intrusion detection system. It provides basic
 access control and can be used with secure HTTP. It also provides
 facilities to log data, including logging to a SQL database.
As previously noted, the real problem with point monitoring is
 that it doesn’t really work well with segmented or switched
 networks. Unless you are mirroring all traffic to your test host,
 many of these numbers can be meaningless. If this is the case,
 you’ll want to collect information from a number of
 sources.

Network-Monitoring Tools

 It should come as no surprise that SNMP can be used to
 collect performance information. We have already seen simple examples in
 Chapter 7. Using the raw
 statistics gathered with a tool like NET SNMP or even the stripcharts in
 tkined is alright if you need only
 a little data, but in practice you will want tools designed to deal
 specifically with performance data. Which tool you use will depend on
 what you want to do. One of your best choices from this family of tools
 is mrtg. (Although it is not
 discussed here, you also may want to look at scion. This is from Merit Networks, Inc., and
 will run under Windows as well as Unix.)
mrtg

mrtg (Multirouter Traffic
 Grapher) was originally developed by Tobias Oetiker with the
 support of numerous people, most notably Dave Rand. This tool uses
 SNMP to collect statistics from network equipment and creates
 web-accessible graphs of the statistics. It is designed to be run
 periodically to provide a picture of traffic over time. mrtg is ideally suited for identifying
 busy-hour traffic. All you need to do is scan the graph looking for
 the largest peaks.
mrtg is most commonly used to graph traffic
 through router interfaces but can be configured for other uses. For
 example, since NET SNMP can be used to collect disk usage data,
 mrtg could be used to retrieve
 and graph the amount of free space on the disk drive over time for a
 system running snmpd. Because the
 graphs are web-accessible, mrtg
 is well suited for remote measurement. mrtg uses SNMP’s GET command to collect
 information. With the current implementation, collection is done by a
 Perl module supplied as part of mrtg. No separate installation of SNMP is
 needed.
mrtg is designed to be run regularly by cron, typically every five minutes.
 However, mrtg can be run as a
 standalone program, or the sampling interval can be changed.
 Configuration files, generally created with the cfgmaker utility, determine the general
 appearance of the web pages and what data is collected. mrtg generates graphs of traffic in GIF
 format and HTML pages to display these graphs. Typically, these will
 be made available by a web server running on the same computer as
 mrtg, but the files can be viewed
 with a web browser running on the same computer or the files can be
 moved to another computer for viewing. This could be helpful when
 debugging mrtg since the web
 server may considerably complicate the installation, particularly if
 you are not currently running a web server or are not comfortable with
 web server configuration.
Figure 8-6
 shows a typical web page generated by mrtg. In this example, you can see some
 basic information about the router at the top of the page and, below
 it, two graphs. One shows traffic for the last 24 hours and the other
 shows traffic for the last two weeks, along with summary statistics
 for each. The monthly and yearly graphs have scrolled off the page.
 This is the output for a single interface. Input traffic is shown in
 green and output traffic is shown in blue, by default, on color
 displays.
[image: mrtg interface report]

Figure 8-6. mrtg interface report

 It is possible to have mrtg generate a summary web page with a
 graph for each interface. Each graph is linked to the more complete
 traffic report such as the one shown in Figure 8-6. The indexmaker utility is used to generate this
 page once the configuration file has been created.
mrtg configuration file

 To use mrtg, you
 will need a separate configuration file for each device. Each
 configuration file will describe all the interfaces within the
 device. Creating these files is the first step after installation.
 While a sample configuration file is supplied as part of the
 documentation, it is much easier to use the cfgmaker script. An SNMP community string
 and hostname or IP number must be supplied as parts to a compound
 argument:
bsd2# cfgmaker public@172.16.2.1 > mrtg.cfg
 Since the script writes the configuration to standard
 output, you’ll need to redirect your output to a file. If you want
 to measure traffic at multiple devices, then you simply need to
 create a different configuration file for each. Just give each a
 different (but meaningful) name.
Once you have a basic configuration file, you can further edit
 it as you see fit. As described next, this can be an involved
 process. Fortunately, cfgmaker
 does a reasonable job. In many cases, this will provide all you
 need, so further editing won’t be necessary.
Here is the first part of a fairly typical configuration file.
 (You may want to compare this to the sample output shown in Figure 8-6.)
Add a WorkDir: /some/path line to this file
WorkDir: /usr/local/share/doc/apache/mrtg

##
Description: Cisco Internetwork Operating System Software IOS (tm) 3600
 Software (C3620-IO3-M), Version 12.0(7)T, RELEASE SOFTWARE (fc2) Copyright (c)
1986-1999 by cisco Systems, Inc. Compiled Wed 08-Dec-99 10:08 by phanguye
Contact: "Joe Sloan"
System Name: NLRouter
Location: "LL 214"
#...

Target[C3600]: 1:public@172.16.2.1
MaxBytes[C3600]: 1250000
Title[C3600]: NLRouter (C3600): Ethernet0/0
PageTop[C3600]: <H1>Traffic Analysis for Ethernet0/0
 </H1>
 <TABLE>
 <TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
 <TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
 <TR><TD>Interface:</TD><TD>Ethernet0/0 (1)</TD></TR>
 <TR><TD>IP:</TD><TD>C3600 (205.153.60.250)</TD></TR>
 <TR><TD>Max Speed:</TD>
 <TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
 </TABLE>

#---

Target[172.16.2.1.2]: 2:public@172.16.2.1
MaxBytes[172.16.2.1.2]: 1250000
Title[172.16.2.1.2]: NLRouter (No hostname defined for IP address): Ethernet0/1
PageTop[172.16.2.1.2]: <H1>Traffic Analysis for Ethernet0/1
 </H1>
 <TABLE>
 <TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
 <TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
 <TR><TD>Interface:</TD><TD>Ethernet0/1 (2)</TD></TR>
 <TR><TD>IP:</TD><TD>No hostname defined for IP address (172.16.1.1)</TD></TR>
 <TR><TD>Max Speed:</TD>
 <TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
 </TABLE>

#---
As you can see from the example, the general format of
 a directive is Keyword[Label]: Arguments
 . Directives always start in the first column
 of the configuration file. Their arguments may extend over multiple
 lines, provided the additional lines leave the first column blank.
 In the example, the argument to the first PageTop directive extends for 10
 lines.
 In this example, I’ve added the second line—specifying
 a directory where the working files will be stored. This is a
 mandatory change. It should be set to a directory that is accessible
 to the web server on the computer. It will contain log files, home
 pages, and graphs for the most recent day, week, month, and year for
 each interface. The interface label, explained shortly, is the first
 part of a filename. Filename extensions identify the function of
 each file.
Everything else, including the files just described,
 is automatically generated. As you can see, cfgmaker uses SNMP to collect some basic
 information from the device, e.g., sysName, sysLocation, and sysContact, for inclusion in the
 configuration file. This information has been used both in the
 initial comment (lines beginning with #) and in the HTML code under the
 PageTop directive. As you might
 guess, PageTop determines what
 is displayed at the top of the page in Figure 8-6.
cfgmaker also determines the type of interface by retrieving
 ifType and its maximum
 operating speed by retrieving ifSpeed, ethernetCsmacd and 125.0 kBytes/s in this example. The interface
 type is used by the PageTop
 directive. The speed is used by both PageTop and the MaxBytes directive. The MaxBytes directive determines the maximum
 value that a measured variable is allowed to reach. If a larger
 number is retrieved, it is ignored. This is given in bytes per
 second, so if you think in bits per second, don’t be misled.
cfgmaker collects information on each interface and creates a
 section in the configuration file for each. Only two interfaces are
 shown in this fragment, but the omitted sections are quite similar.
 Each section will begin with the Target directive. In this example, the
 first interface is identified with the directive Target[C3600]: 1:public@172.16.2.1. The interface was
 identified by the initial scan by cfgmaker. The label was obtained by doing
 name resolution on the IP address. In this case, it came from an
 entry in /etc/hosts.[1] If name resolution fails, the IP and port numbers will
 be used as a label. The argument to Target is a combination of the port
 number, SNMP community string, and IP address of the interface. You
 should be aware that adding or removing an interface in a monitored
 device without updating the configuration file can lead to bogus
 results.
The only other directive in this example is Title, which determines the title
 displayed for the HTML page. These examples are quite adequate for a
 simple page, but mrtg provides
 both additional directives and additional arguments that provide a
 great deal of flexibility.
By default, mrtg collects
 the SNMP objects ifInOctets and
 ifOutOctets for each interface.
 This can be changed with the Target command. Here is an example of a
 small test file (the recommended way to test mrtg) that is used to collect the number
 of unicast and nonunicast packets at an interface.
bsd2# cat test.cfg
WorkDir: /usr/local/share/doc/apache/mrtg

Target[Testing]: ifInUcastPkts.1&ifInNUcastPkts.1:public@172.16.2.1
MaxBytes[Testing]: 1250000
Title[Testing]: NLRouter: Ethernet0/0
PageTop[Testing]: <H1>Traffic Analysis for Ethernet0/0
 </H1>
 <TABLE>
 <TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
 <TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
 <TR><TD>Interface:</TD><TD>Ethernet0/0 (1)</TD></TR>
 <TR><TD>IP:</TD><TD>C3600 (205.153.60.250)</TD></TR>
 <TR><TD>Max Speed:</TD>
 <TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
 </TABLE>
mrtg knows a limited number of OIDs. These are described
 in the mibhelp.txt file that
 comes with mrtg. Fortunately,
 you can use dotted notation as well, so you aren’t limited to
 objects with known identifiers. Nor do you have to worry about MIBs.
 You can also use an expression in the place of an identifier, e.g.,
 the sum of two OIDs, or you can specify an external program if you
 wish to collect data not available through SNMP. There are a number
 of additional formats and options available with Target.
 Other keywords are available that will allow you to
 customize mrtg’s behavior. For
 example, you can use the Interval directive to change the reported
 frequency of sampling. You’ll also need to change your crontab file to match. If you don’t want
 to use cron, you can use the
 RunAsDaemon directive, in
 conjunction with the Interval
 directive to set mrtg up to run
 as a standalone program. Interval
 takes an argument in minutes; for example, Interval: 10 would sample every 10 minutes. To
 enable mrtg to run as a
 stand-alone program, the syntax is
 RunAsDaemon:
 yes.
 Several directives are useful for controlling the
 appearance of your graphs. If you don’t want all four graphs, you
 can suppress the display of selected graphs with the Suppress directive. For example, Suppress[Testing]: my
 will suppress the monthly and yearly graphs. Use d and w for daily and weekly graphs. You may
 use whatever combination you want.
One annoyance with mrtg is that it scales each graph to the
 largest value that has to be plotted. mrtg shouldn’t be faulted for this; it is
 simply using what information it has. But the result can be graphs
 with some very unusual vertical scales and sets of graphs that you
 can’t easily compare. This is something you’ll definitely want to
 adjust.
You can work around this problem with several of the
 directives mrtg provides, but
 the approach you choose will depend, at least in part, on the
 behavior of the data you are collecting. The Unscaled directive suppresses automatic
 scaling of data. It uses the value from MaxBytes as maximum on the vertical
 scale. You can edit MaxBytes if
 you are willing to have data go off the top of the graph. If you
 change this, you should use AbsMax to set the largest value that you
 expect to see.
 Other commands allow you to change the color, size,
 shape, and background of your graphs. You can also change the
 directions that graphs grow. Here is an example that changes the
 display of data to bits per second, has the display grow from left
 to right, displays only the daily and weekly graphs, and sets the
 vertical scale to 4000 bits per second:
Options[Testing]: growright,bits
Suppress[Testing]: my
MaxBytes[Testing]: 500
AbsMax[Testing]: 1250000
Unscaled[Testing]: dw
Notice that you still need to give MaxBytes and AbsMax in bytes.
Many more keywords are available. Only the most common have
 been described here, but these should be more than enough to meet
 your initial needs. See the mrtg sample configuration file and
 documentation for others.
Once you have the configuration file, use indexmaker to create a main page for all
 the interfaces on a device. In its simplest form, you merely give
 the configuration file and the destination file:
bsd2# indexmaker mrtg.cfg > /usr/local/www/data/mrtg/index.html
You may specify a router name and a regular expression that
 will match a subset of the interfaces if you want to limit what you
 are looking at. For example, if you have a switch with a large
 number of ports, you may want to monitor only the uplink
 ports.
You’ll probably want to run mrtg manually a couple of times. Here is
 an example using the configuration file test.cfg:
bsd2# mrtg test.cfg
Rateup WARNING: .//rateup could not read the primary log file for testing
Rateup WARNING: .//rateup The backup log file for testing was invalid as well
Rateup WARNING: .//rateup Can't remove testing.old updating log file
Rateup WARNING: .//rateup Can't rename testing.log to testing.old updating log f
ile
The first couple of runs will generate warning messages about
 missing log files and the like. These should go away after a couple
 of runs and can be safely ignored.
Finally, you’ll want to make an appropriate entry in
 your contab file. For example,
 this entry will run mrtg every
 five minutes on a FreeBSD system:
0,5,10,15,20,25,30,35,40,45,50,55 * * * * /usr/ports/net/mrtg/work/mrtg-2.8.12/r
un/mrtg /usr/ports/net/mrtg/work/mrtg-2.8.12/run/mrtg.cfg > /dev/null 2>&1
This should be all on a single line. The syntax is different
 on some systems, such as Linux, so be sure to check your local
 manpages.

rrd and the Future of mrtg

 The original version of mrtg had two deficiencies, a lack of both
 scalability and portability. Originally, mrtg was able to support only about 20
 routers or switches. It used external utilities to perform SNMP
 queries and create GIF images—snmpget from CMU SNMP and pnmtogif from the PBM package,
 respectively.
 These issues were addressed by MRTG-2, the second and
 current version of mrtg.
 Performance was improved when Dave Rand contributed rateup to the project. Written in C,
 rateup improved both graph
 generation and handling of the log files.
 The portability problem was addressed by two changes.
 First, Simon Leinen’s Perl script for collecting SNMP is now used,
 eliminating the need for CMU SNMP. Second, Thomas Boutell’s GD library
 is now used to directly generate graphics. At this point, mrtg is said to reasonably support querying
 500 ports on a regular basis.
As an ongoing project, the next goal is to further
 improve performance and flexibility. Toward this goal, Tobias Oetiker
 has written rrd (Round Robin
 Database), a program to further optimize the database and
 the graphing portion of mrtg.
 Although MRTG-3, the next version of mrtg, is not complete, rrd has been completed and is available as
 a standalone program. MRTG-3 will be built on top of rrd.
rrd is designed to store and display time-series data. It
 is written in C and is available under the GNU General Public License.
 rrd stores data in a round-robin
 fashion so that older data is condensed and eventually discarded.
 Consequently, the size of the database stabilizes and will not
 continue to grow over time.

cricket

 A number of frontends are available for rrd, including Jeff Allen’s cricket. Allen, working at WebTV, was using
 mrtg but found that it really
 wasn’t adequate to support the 9000 targets he needed to manage.
 Rather than wait for MRTG-3, he developed cricket. At least superficially, cricket has basically the same uses as
 mrtg. But cricket has been designed to be much more
 scalable. cricket is organized
 around the concept of a configuration tree. The configuration files
 for devices are organized in a hierarchical manner so the general
 device properties can be defined once at a higher level and inherited,
 while exceptions can be simply defined at a lower level of the
 hierarchy. This makes cricket
 much more manageable for larger organizations with large numbers of
 devices. Since it is designed around rrd, cricket is also much more efficient.
cricket does a very nice job of organizing the pages that it
 displays. To access the pages, you will begin by executing the
 grapher.cgi script on the server.
 For example, if the server were at 172.16.2.236
 and CGI scripts were in the cgi-bin directory, you would point your
 browser to the URL http://172.16.2.236/cgi-bin/grapher.cgi.
 This will present you with a page organized around types of devices,
 e.g., routers, router interfaces, switches, along with descriptions of
 each. From this you will select the type of device you want to
 monitor. Depending on your choice, you may be presented with a list of
 monitored devices items or with another subhierarchy such as that
 shown in Figure
 8-7.
[image: cricket router interfaces]

Figure 8-7. cricket router interfaces

You can quickly drill down to the traffic graph for the device
 of interest. Figure
 8-8 shows an example of a traffic graph for a router interface
 on a router during a period of very low usage (but you get the idea, I
 hope).
[image: Traffic on a single interface]

Figure 8-8. Traffic on a single interface

 As you can see, this looks an awful lot like the graphs
 from mrtg. Unlike with mrtg, you have some control over which
 graphs are displayed from the web page. Short-Term displays both
 hourly and daily graphs, Long-Term displays both weekly and monthly
 graphs, and Hourly, Daily, and All are just what you would
 expect.[2]
Of course, you will need to configure each option for mrtg to work correctly. You will need to go
 through the hierarchy and identify the appropriate targets, set SNMP
 community strings, and add any descriptions that you want. Here is the
 interfaces file in the router-interfaces subdirectory of the
 cricket-config directory, the
 directory that contains the configuration tree. (This file corresponds
 to the output shown in Figure 8-8.)
target --default--
 router = NLCisco
 snmp-community=public

target Ethernet0_0
 interface-name = Ethernet0/0
 short-desc = "Gateway to Internet"

target Ethernet0_1
 interface-name = Ethernet0/1
 short-desc = "172.16.1.0/24 subnet"

target Ethernet0_2
 interface-name = Ethernet0/2
 short-desc = "172.16.2.0/24 subnet"

target Ethernet0_3
 interface-name = Ethernet0/3
 short-desc = "172.16.3.0/24 subnet"

target Null0
 interface-name = Null0
 short-desc = ""
 While this may look simpler than an mrtg configuration file, you’ll be dealing
 with a large number of these files. If you make a change to the
 configuration tree, you will need to recompile the configuration tree
 before you run cricket. As with
 mrtg, you will need to edit your
 crontab file to execute the
 collector script on a regular
 basis.
 On the whole, cricket is considerably more difficult to
 learn and to configure than mrtg.
 One way that cricket gains
 efficiency is by using CGI scripts to generate web pages only when
 they are needed rather than after each update. The result is that the
 pages are not available unless you have a web server running on the
 same computer that cricket is
 running on. Probably the most difficult part of the cricket installation is setting up your web
 server and the cricket directory
 structure so that the scripts can be executed by the web server
 without introducing any security holes. Setting up a web server and
 web security are beyond the scope of this book.
Unless you have such a large installation that mrtg doesn’t meet your needs, my advice
 would be to start with mrtg. It’s
 nice to know that cricket is out
 there. And if you really need it, it is a solid package worth
 learning. But mrtg is easier to
 get started with and will meet most people’s needs.

RMON

 As we saw in the last chapter, SNMP can be used to collect
 network traffic at an interface. Unfortunately, SNMP is not a very
 efficient mechanism in some circumstances. Frequent collection of data
 over an overused, low-bandwidth WAN link can create the very problems
 you are using SNMP to avoid. Even after you have the data, a significant
 amount of processing may still be needed before the data is in a useful
 form.
 A better approach is to do some of the processing and data
 reduction remotely and retrieve data selectively. This is one of the
 ideas behind the remote monitoring (RMON)
 extensions to SNMP. RMON is basically a mechanism to collect and process
 data at the point of collection. RMON provides both continuous and
 offline data collection. Some implementation can even provide remote
 packet capture. The RMON mechanism may be implemented in software on an
 existing device, in dedicated hardware such as an add-on card for a
 device, or even as a separate device. Hardware implementations are
 usually called RMON probes.
Data is organized and retrieved in the same manner as SNMP
 data. Data organization is described in an RMON MIB, identified by OIDs,
 and retrieved with SNMP commands. To the users, RMON will seem to be
 little more than an expanded or super MIB. To implementers, there are
 significant differences between RMON and traditional SNMP objects,
 resulting from the need for continuous monitoring and remote data
 processing.
Originally, RMON data was organized in nine groups (RFCs 1271 and
 1757) and later expanded to include a tenth group (RFC 1513) for token
 rings:
	Statistics group
	 Offers low-level utilization and error
 statistics

	History group
	 Provides trend analysis data based on the data from
 the statistics group

	Alarm group
	Provides for the user to configure alarms

	Event group
	 Logs and generates traps for user-defined rising
 thresholds, falling thresholds, and matched packets

	Host group
	Collects statistics based on MAC addresses

	Top N Hosts group
	Collects host statistics for the busiest hosts

	Packet Capture group
	Controls packet capture

	Traffic Matrix group
	Collects and returns errors and utilization data
 based on pairs of addresses

	Filter group
	Collects information based on definable filters

	Token-ring group
	Collects low-level token-ring statistics

RMON implementations are often limited to a subset of these
 groups. This isn’t unrealistic, but you should be aware of what you are
 getting when paying the premium prices often required for RMON
 support.
Provided you have the RMON MIB loaded, you can use
 snmptranslate to explore the
 structure of these groups. For example, here is the structure of the
 statistics group:
bsd2# snmptranslate -Tp rmon.statistics
+--statistics(1)
 |
 +--etherStatsTable(1)
 |
 +--etherStatsEntry(1)
 |
 +-- -R-- Integer etherStatsIndex(1)
 | Range: 1..65535
 +-- -RW- ObjID etherStatsDataSource(2)
 +-- -R-- Counter etherStatsDropEvents(3)
 +-- -R-- Counter etherStatsOctets(4)
 +-- -R-- Counter etherStatsPkts(5)
 +-- -R-- Counter etherStatsBroadcastPkts(6)
 +-- -R-- Counter etherStatsMulticastPkts(7)
 +-- -R-- Counter etherStatsCRCAlignErrors(8)
 +-- -R-- Counter etherStatsUndersizePkts(9)
 +-- -R-- Counter etherStatsOversizePkts(10)
 +-- -R-- Counter etherStatsFragments(11)
 +-- -R-- Counter etherStatsJabbers(12)
 +-- -R-- Counter etherStatsCollisions(13)
 +-- -R-- Counter etherStatsPkts64Octets(14)
 +-- -R-- Counter etherStatsPkts65to127Octets(15)
 +-- -R-- Counter etherStatsPkts128to255Octets(16)
 +-- -R-- Counter etherStatsPkts256to511Octets(17)
 +-- -R-- Counter etherStatsPkts512to1023Octets(18)
 +-- -R-- Counter etherStatsPkts1024to1518Octets(19)
 +-- -RW- String etherStatsOwner(20)
 | Textual Convention: OwnerString
 +-- -RW- EnumVal etherStatsStatus(21)
 Textual Convention: EntryStatus
 Values: valid(1), createRequest(2), underCreation(3), invalid(
4)
You retrieve the number of Ethernet packets on each
 interface exactly as you might guess:
bsd2# snmpwalk 172.16.1.9 public rmon.1.1.1.5
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.1 = 36214
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.2 = 0
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.3 = 3994
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.4 = 242
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.5 = 284
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.6 = 292
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.7 = 314548
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.8 = 48074
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.9 = 36861
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.10 = 631831
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.11 = 104
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.12 = 457157
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.25 = 0
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.26 = 0
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.27 = 0
(This is data from a recently installed 12 port switch. The last
 three interfaces are currently unused uplink ports.)
 The primary problem with RMON, as described, is that it is
 limited to link-level traffic. This issue is being addressed with RMON2
 (RFC 2021), which adds another 10 groups. In order to collect
 network-level information, however, it is necessary to delve into
 packets. This is processing intensive, so it is unlikely that RMON2 will
 become common in the near future. For most purposes, the first few RMON
 groups should be adequate.
One final word of warning. While RMON may lessen network traffic,
 RMON can be CPU intensive. Make sure you aren’t overloading your system
 when collecting RMON data. It is ironic that tools designed to analyze
 traffic to avoid poor performance can actually cause that performance.
 To make truly effective use of an RMON probe, you should consider using
 a commercial tool designed specifically for your equipment and
 goals.

Microsoft Windows

 Apart from the basic text-based tools such as netstat, Microsoft doesn’t really include
 many useful utilities with the consumer versions of Windows. But if you
 are using Windows NT or Windows 2000, you have more options. The
 netmon tool is included with the
 server versions. A brief description of how this tool can be used to
 capture traffic was included in Chapter 5. netmon can also be used to capture basic
 traffic information.
 Figure
 8-9 shows netmon’s basic
 capture screen. The upper-left pane shows five basic graphs for
 real-time traffic—network utilization, frames per second, bytes per
 second, broadcasts per second, and multicasts per second. The second
 pane on the left lists current connections between this and other hosts.
 The details of these connections are provided in the bottom pane. The
 pane on the right gives overall network statistics. To use netmon in this fashion, just start the
 program and select Capture → Start. In standalone mode, netmon functions as a point-monitoring tool,
 but as noted in Chapter 5,
 it can be used with agents to collect traffic throughout the
 network.
[image: netmon traffic monitoring]

Figure 8-9. netmon traffic monitoring

 For general systems monitoring, perfmon (Performance Monitor) is a better
 choice. It is also supplied with both the workstation and server
 versions. perfmon is a general
 performance-monitoring tool, not just a network-monitoring tool. You can
 use it to measure system performance (including CPU utilization) and I/O
 performance, as well as basic network performance. If appropriately
 configured, it will also monitor remote machines.
Data collected is organized by object type, e.g., groups
 of counters. For example, with the UDP object, there are counters for
 the number of datagrams sent per second, datagrams received per second,
 datagrams received errors, etc. For network monitoring, the most
 interesting objects include ICMP, IP, Network Interface, RAS Ports, RAS
 Total, TCP, and UDP.
perfmon provides four views—alert, chart, log, and report. With
 alert view you can set a threshold and be notified when a counter
 exceeds or drops below it. Chart view gives a real-time graph for
 selected counters. You can customize the sampling rate and scale. Log
 view logs all the counters for an object to a file periodically.
 Finally, report view displays numerical values in a window for selected
 counters. Each view is independent of the others. Figure 8-10 shows the
 process of adding a monitored object to the chart view for the Windows
 NT version.
[image: Windows NT perfmon]

Figure 8-10. Windows NT perfmon

The Windows 2000 version has received a slight face-lift but seems
 to be the same basic program. perfmon can be particularly useful if you
 aren’t sure whether you have a host problem or a network problem. Both
 netmon and perfmon are described in the Windows help
 files as well as several books described in Appendix B.
ntop, mrtg, and cricket on Windows

 All three major packages described in this
 chapter—ntop, mrtg, and cricket—are available for Windows
 systems.
The developers of ntop have
 provided you with two choices. You can compile it yourself for free.
 Both the Unix and Windows versions share the same source tree. Or, if
 you can’t easily compile it, you can buy a precompiled binary directly
 from them. Since ntop is
 basically a point-monitoring tool, you’ll likely want to run it on
 multiple machines if you have a switched network or multiple
 subnetworks.
 Since mrtg and
 cricket are primarily written in
 Perl, it is not surprising that they will run under Windows. You’ll
 find mrtg fairly straightforward
 to set up. While cricket is said
 to work, at the time this was written there were no published
 directions on how to set it up, and the Unix directions don’t
 generalize well.
 Setting up mrtg for
 Windows is not that different from setting it up under Unix. To get
 mrtg running, you’ll need to
 download a copy of mrtg with the
 binary for rateup. This was
 included with the copy of mrtg I
 downloaded, but the mrtg web page
 for NT has a separate link should you need it. You will need a copy of
 Perl along with anything else you may need to get Perl running. The
 mrtg site has links to the Active
 Perl site. Installing Active Perl requires an updated version of the
 Windows Installer, available at their site. You’ll need to provide
 some mechanism for running mrtg
 on a regular basis. The file fiveminute.zip provided a program to add
 mrtg to the Windows NT scheduler.
 Finally, you’ll want to provide some mechanism to view the output from
 mrtg. This could be a web server
 or, at a minimum, a web browser.
Once you have unpacked everything, you’ll need to edit the
 mrtg script so that NT rather
 than Unix is the operating system. This amounts to commenting out the
 fourth line of the script and uncommenting the fifth:
#$main::OS = 'UNIX';
$main::OS = 'NT';
Also, make sure rateup is
 in the same directory as mrtg.
 Creating the configuration file and running the script
 is basically the same as with the Unix version. You’ll want to run
 cfgmaker and indexmaker. And, as with the Unix version,
 you’ll need to edit the configuration file to set WorkDir :. You will need to invoke Perl
 explicitly and use explicit paths with these scripts. For example,
 here are the commands to run indexmaker and mrtg on my system:
D:\mrtg\run>perl d:\mrtg\run\indexmaker d:\mrtg\run\mrtg.cfg > d:\apache\htdocs\mrtg
D:\mrtg\run>perl d:\mrtg\run\mrtg d:\mrtg\run\mrtg.cfg
On my system, D:\mrtg\run
 is the directory where mrtg is
 installed and D:\apache\htdocs\mrtg is where the output
 is put so it can be accessed by the web server.
Finally, you’ll need to make some provision to run mrtg periodically. As noted, you can use
 supplied code to add it to the scheduler. Alternately, you can edit
 the configuration file to have it run as a daemon. For example, you
 could add the following to your configuration file:
RunAsDaemon: yes
Interval: 5
You’ll want to add mrtg to
 the startup group so that it will be run automatically each time the
 system is rebooted.

getif revisited

 In Chapter
 7, we introduced getif but
 did not discuss the graph tab. Basically, the graph tab provides for
 two types of graphs—graphs of ping round-trip delays and graphs of
 SNMP objects. The latter allows us to use getif as a traffic-monitoring tool.
Graphing SNMP objects is a three-step process. First,
 you’ll need to go back to the Parameters tab and identify the remote
 system and set its SNMP community strings. Next, you’ll need to visit
 the MBrowser tab and select the objects you want to graph. Locate the
 objects of interest by working your way down the MIB tree in the large
 pane on the upper left of the window. Visit the object by clicking the
 Walk button. The object and its value should be added to the large
 lower pane. Finally, select the item from the large pane and click on
 the Add to Graph button. (Both of these tabs were described in Chapter 7.)
You can now go to the Graph tab. Each of the selected variables
 should have been added to the legend to the right of the chart. You
 can begin collecting data by clicking on the Start button. Figure 8-11 shows one
 such graph.
[image: getif graph]

Figure 8-11. getif graph

The controls along the bottom of the page provide some control
 over the appearance of the chart and over the sampling rate.

[1] In this example, a different system name and hostname are
 used to show where each is used. This is not recommended.

[2] mrtg uses Daily to mean
 an hour-by-hour plot for 24 hours. cricket uses Hourly to mean the same
 thing. This shouldn’t cause any problems.

 V
	variables, Overview of SNMP, Monitoring SNMP objects
		monitoring with tkined, Monitoring SNMP objects
	SNMP objects as, Overview of SNMP

	vendors, Testing Adapters, arpwatch, Web mode, Sources of Information, Sources of Information, Sources of Information
		adapter configuration software, Testing Adapters
	diagnostic tools, Sources of Information
	documentation, Sources of Information
	host vendor information, Web mode
	information in arpwatch tool, arpwatch
	web sites, Sources of Information

	verbose output, ps, Options, Options, echoping, arping, Options, pathchar, bing, Controlling what’s displayed, Agents and traps, hping, nemesis
		arping tool, arping
	bing, bing
	echoping, echoping
	hping tool, hping
	nemesis tool, nemesis
	pathchar, pathchar
	ping tools, Options, Options
	ps command, ps
	SNMP, Agents and traps
	tcpdump tool, Controlling what’s displayed
	traceroute tool, Options

	verifying results in troubleshooting, Generic Troubleshooting
	versions, Documentation, Characteristics of Management Software, Configuration and options
		displaying for SNMP, Configuration and options
	distinguishing tools and documentation, Documentation
	software management, Characteristics of Management Software

	victims in Smurf attacks, Smurf Attacks
	view only mode (vnc), vnc
	viewers in vnc, vnc
	VINT (Virtual InterNetwork Testbed), ns and nam
	virtual LANs, Controlling what’s displayed, Protecting Yourself, Mapping or Diagramming
	virtual network computing (vnc), vnc–vnc
	Visio, Other Tools for Windows
	VLANs (virtual local area networks), Controlling what’s displayed, Protecting Yourself, Mapping or Diagramming
	vnc remote control tool, Other Options, vnc–vnc, Microsoft Windows, Sources for Tools
	vrfy command (telnet), Email

 B
	background tcpdump capture, Using tcpdump
	backgrounds of mrtg graphs, mrtg configuration file
	backward compatibility of operating systems, Startup Files and Scripts
	bandwidth measurements, Path Performance, Performance Measurements, Performance Measurements, Bandwidth Measurements–Packet pair software, ping revisited, pathchar–pathchar, bing, bing–bing, Packet pair software, Packet pair software, Microsoft Windows, Web mode, NISTNet
		bing tool, bing–bing
	bottleneck bandwidth, Performance Measurements, Packet pair software
	emulators and, NISTNet
	Microsoft Windows, Microsoft Windows
	ntop results, Web mode
	packet pair software, Packet pair software
	pathchar tool, pathchar–pathchar
	ping and, ping revisited
	point-to-point bandwidth, bing

	banners at login, Device Identification
	basic configuration files, Basic Configuration Files
	Basic Encoding Rules (BER), Overview of SNMP
	bb monitoring tool, Non-SNMP Approaches, Sources for Tools
	benchmark tools, Microsoft Windows, NFS
	BER (Basic Encoding Rules), Overview of SNMP
	BER.pm extension, Scripts
	Berkeley Internet Name Daemon, Sources for Tools (see bind testing tools)
	Berkeley packet filter, disabling, Protecting Yourself
	bibliography of resources, References by Topic–References
	Big Brother monitoring tool (bb), Non-SNMP Approaches, Sources for Tools
	binary format tcpdump files, Using tcpdump
	binary search technique, General Approaches to Troubleshooting
	bind testing tools, nslookup and dig, nslookup and dig, Sources for Tools, Sources for Tools, Sources for Tools, Sources for Tools
		name service tools, nslookup and dig, Sources for Tools
	serial counters and, nslookup and dig
	source web site, Sources for Tools, Sources for Tools, Sources for Tools

	bing bandwidth tool, pathchar, bing–bing, Sources for Tools
	biod daemon, NFS
	bit masks, Packet characteristics. (see subnet masks)
	blinking lights on devices, Link lights
	blocking, Interpreting results, Smurf Attacks, Other problems, Politics and Security, hping, Firewall testing
		CMIP packets, Politics and Security
	filtering packets, Interpreting results
	ICMP packets, Smurf Attacks, Other problems
	illegal packets, hping
	testing firewalls, Firewall testing

	bluebird management framework source web site, Sources for Tools
	books and resources, References by Topic–References
	booting systems, Kernel, Startup Files and Scripts
	bottleneck analysis in performance
 measurement, Bottleneck analysis–Bottleneck analysis
	bottleneck bandwidth, Performance Measurements, Packet pair software
	bprobe bandwidth tool, Packet pair software, Sources for Tools
	bridges, traffic capture and, Access to Traffic
	broadcast addresses, netstat, ifconfig, Interpreting results, Smurf Attacks, Address filtering., Packet characteristics., Web mode
		configuring ICMP responses, Smurf Attacks
	duplicate packets and, Interpreting results
	filtering, Address filtering.
	in interfaces, ifconfig
	matching in filters, Packet characteristics.
	ntop results, Web mode
	in routing tables, netstat

	browsing MIBs in tkined, Examining MIBs–Examining MIBs
	BSD systems, Basic Configuration Files, Kernel, Kernel, Kernel, Startup Files and Scripts
		(see also FreeBSD systems, OpenBSD systems)
	changing kernel configuration, Kernel
	configuration files, Basic Configuration Files
	rc files, Startup Files and Scripts
	recompiling kernel, Kernel

	bulk transfer capacity, Throughput Measurements, Other related tools
	bus mastering, Testing Adapters
	busy hours, What, When, and Where, mrtg
	bytes, number to capture, Controlling program behavior, Using ethereal

 [image: Network Troubleshooting Tools]

 Q
	Qcheck benchmarking tool, Microsoft Windows, Sources for Tools
	quality of service measurements, NISTNet
	queso fingerprinting tool, queso, Sources for Tools
	queuing delays or times, Performance Measurements, ping revisited, pathchar, pathchar
	quick fixes, General Approaches to Troubleshooting
	quiet output, Options, arping, Controlling what’s displayed, hping
		arping tool, arping
	hping settings, hping
	ping results, Options
	tcpdump tool, Controlling what’s displayed

 G
	gated distribution, Routing, Sources for Tools
	gateway emulators, NISTNet
	gateways in routing tables, netstat
	GD library, rrd and the Future of mrtg
	generating packets, MGEN (see load generators)
	generic troubleshooting strategies, Generic Troubleshooting–Generic Troubleshooting
	getif SNMP tool, SNMP Tools, getif revisited, Sources for Tools
	GET_BULK_REQUEST messages (SNMP), Overview of SNMP
	GET_NEXT_REQUEST messages (SNMP), Overview of SNMP, snmpget, snmpgetnext, snmpwalk, and snmptable
	GET_REQUEST messages (SNMP), Overview of SNMP, snmpget
	GET_RESPONSE messages (SNMP), Overview of SNMP
	GIF images of traffic patterns, mrtg
	gimp image tool, Automating Documentation, Sources for Tools
	glint package management tool, Red Hat Package Manager
	GNOME project, Discovery and Mapping Tools
	gnorpm package management tool, Red Hat Package Manager
	GNU AWACS logging tool, Log File Management, Sources for Tools
	goals of performance measurement, General steps
	grapher.cgi script (cricket), cricket
	graphing MIB trees, Examining MIBs
	graphing traffic data, tcptrace, xplot, Web mode, mrtg, cricket, Microsoft Windows, getif revisited
		cricket tool, cricket
	getif tool, getif revisited
	mrtg tool, mrtg
	netmon tool, Microsoft Windows
	xplot tool, tcptrace, xplot

	gratuitous ARP, IP Address Management
	grep command, arpwatch
	groups, Drawing maps with tkined, Drawing maps with tkined, Overview of SNMP, Agents and traps, ICMP monitoring, RMON
		in MIBs, Overview of SNMP
	RMON, RMON
	SNMP access classes, Agents and traps
	in tkined network
 display, Drawing maps with tkined, Drawing maps with tkined, ICMP monitoring

	growth in networks, Capacity planning
	GTK+ development toolkit, Sources for Tools
	gtkportscan scanning tool, Scanning Tools, Sources for Tools
	GUI configuration applications, Configuration Programs
	GUI Tk extensions, Tcl/Tk and scotty
	gunzip decompression tool, Generic Installs
	GxSNMP SNMP Manager, Discovery and Mapping Tools, Sources for Tools
	.GZ files, Generic Installs

