Preface

Text editing is one of the most common tasks on any computer system,
 and vi is one of the most useful
 standard text editors on a system. With vi you can create new files or edit any existing
 text-only file.
vi, like many of the classic
 utilities developed during the early years of Unix, has a reputation for
 being hard to navigate. Bram Moolenaar’s enhanced clone, Vim (“vi Improved”), has gone a long way toward
 removing reasons for such impressions. Vim includes countless
 conveniences, visual guides, and help screens. It has become probably the
 most popular version of vi, so this
 seventh edition of this book devotes seven new chapters to it in Part II. However, many other worthy
 clones of vi also exist; we cover three
 of them in Part III.
How the Material Is
 Presented

Our philosophy
 is to give you a good overview of what we feel are vi survival materials for the new user.
 Learning a new editor, especially an editor with all the options of
 vi, can seem like an overwhelming
 task. We have made an effort to present basic concepts and commands
 in an easy-to-read and logical manner.
After providing the
 basics for vi, which are usable everywhere,
 we move on to cover Vim in depth. We then round out our coverage of
 the vi landscape by looking at nvi, elvis,
 and vile. The following sections describe
 the conventions used in this book.

 Discussion of vi
 Commands

A picture of a keyboard button, like
 the one on the left, marks the main discussion of that
 particular keyboard command or of related commands. You will
 find a brief introduction to the main concept before it is
 broken down into task-oriented sections. We then present the
 appropriate command to use in each case, along with a
 description of the command and the proper syntax for using
 it.

Conventions

In syntax
 descriptions and examples, what you would actually type is
 shown in the Courier font, as
 are all command names. Filenames are also shown in Courier, as are program
 options. Variables (which you would not type literally, but
 would replace with an actual value when you type the
 command) are shown in Courier
 italic. Brackets indicate that a
 variable is optional. For example, in the syntax line:
vi [filename]
filename would
 be replaced by an actual filename. The brackets indicate
 that the vi command can be invoked
 without specifying a filename at all. The brackets
 themselves are not typed.
Certain examples show the
 effect of commands typed at the Unix shell prompt. In such
 examples, what you actually type is shown in Courier
 Bold, to distinguish it from the system
 response. For example:
$ls
ch01.xml ch02.xml ch03.xml ch04.xml
In
 code examples, italic
 indicates a comment that is not to be typed. Otherwise,
 italic
 introduces special terms and emphasizes anything that needs
 emphasis.
Following traditional Unix documentation
 convention, references of the form printf(3) refer to the online
 manual (accessed via the man
 command). This example refers to the entry for the printf() function in section
 3 of the manual (you would type man 3
 printf on most systems to see
 it).

Keystrokes

Special keystrokes are
 shown in a box. For example:
iWith aESC
Throughout
 the book, you will also find columns of vi commands and their results:

 	Keystrokes
 	Results

 	ZZ
 	
 "practice" [New file] 6 lines, 320 characters

 	
 	 Give the write and save command, ZZ. Your file is saved as a
 regular Unix file.

In the preceding example, the command ZZ is shown in the left
 column. In the window to the right is a line (or several
 lines) of the screen that show the result of the command.
 Cursor position is shown in reverse video. In this instance,
 since ZZ saves and writes the
 file, you see the status line shown when a file is written;
 the cursor position is not shown. Below the window is an
 explanation of the command and its result.
 Sometimes
 vi commands are issued by
 pressing the CTRL key and
 another key simultaneously. In the text, this combination
 keystroke is usually written within a box (for example,
 CTRL-G). In code
 examples, it is written by preceding the name of the key
 with a caret (^). For example, ^G means to hold down CTRL while pressing the G key.

Problem
 Checklist

A problem
 checklist is included in those sections where you may run
 into some trouble. You can skim these checklists and go back
 to them when you actually encounter a problem. All of the
 problem checklists are also collected in Appendix C, for ease of
 reference.

Opening and Closing Files

You can use vi to
 edit any text file. vi copies the
 file to be edited into a buffer (an area
 temporarily set aside in memory), displays the buffer (though you can
 see only one screenful at a time), and lets you add, delete, and
 change text. When you save your edits, vi copies the edited buffer back into a
 permanent file, replacing the old file of the same name. Remember that
 you are always working on acopy of your file in the buffer,
 and that your edits will not affect your original file until you save
 the buffer. Saving your edits is also called “writing the buffer,” or more commonly, “writing your
 file.”
Opening a File

vi is the Unix
 command that invokes the vi
 editor for an existing file or for a brand new file. The syntax for
 the vi command is:
$ vi [filename]
The brackets shown on the above command line indicate that the
 filename is optional. The brackets should not be typed. The $ is the Unix prompt. If the filename is
 omitted, vi will open an unnamed
 buffer. You can assign the name when you write the buffer into a
 file. For right now, though, let’s stick to naming the file on the
 command line.
A filename must be unique inside its directory. A filename can include any 8-bit character except a
 slash (/), which is reserved as the separator between files and
 directories in a pathname, and ASCII NUL, the character with all
 zero bits. You can even include spaces in a filename by typing a
 backslash (\) before the space. In practice, though, filenames
 generally consist of any combination of uppercase and lowercase
 letters, numbers, and the characters dot (.) and underscore (_). Remember that Unix is case-sensitive: lowercase
 letters are distinct from uppercase letters. Also remember that you
 must press ENTER to tell Unix that
 you are finished issuing your command.
When you want to open a new file in a directory, give a new
 filename with the vi command. For
 example, if you want to open a new file called practice in the current directory, you
 would enter:
$vi practice
Since this is a new file, the buffer is empty and the screen
 appears as follows:
~
~
~
"practice" [New file]
The tildes (~) down the lefthand column of the screen
 indicate that there is no text in the file, not even blank
 lines. The prompt line (also called the status line) at the
 bottom of the screen echoes the name and status of the file.
You can also edit any existing text file in a directory by
 specifying its filename. Suppose that there is a Unix file with the pathname
 /home/john/letter. If you are
 already in the /home/john
 directory, use the relative pathname. For example:
$vi letter
brings a copy of the file letter to the screen.
If you are in another directory, give the full
 pathname to begin editing:
$vi /home/john/letter

Problems Opening Files

	When you invoke vi , the message
 [open mode]
 appears.
 Your terminal type is probably incorrectly
 identified. Quit the editing session immediately by typing
 :q. Check the environment
 variable $TERM. It should be
 set to the name of your terminal. Or ask your system
 administrator to provide an adequate terminal type
 setting.

	You see one of the following
 messages:
Visual needs addressable cursor or upline capability
Bad termcap entry
Termcap entry too longterminal: Unknown terminal type
Block device required
Not a typewriter
 Your terminal type is either undefined, or
 there’s probably something wrong with your terminfo or termcap entry. Enter :q to quit. Check your $TERM environment variable, or ask
 your system administrator to select a terminal type for your
 environment.

	A [new
 file] message appears when you think a file
 already exists.
Check that you have used correct case in the filename
 (Unix filenames are case-sensitive). If you have, then you are
 probably in the wrong directory. Enter :q to quit. Then check to see that you
 are in the correct directory for that file (enter pwd at the Unix prompt). If you are in
 the right directory, check the list of files in the directory
 (with ls) to see whether the
 file exists under a slightly different name.

	You invoke vi , but you get a colon
 prompt (indicating that you’re in ex line-editing
 mode).
You probably typed an interrupt before vi could draw the screen. Enter
 vi by typing vi at the ex prompt (:).

	One of the following messages
 appears:
[Read only]
File is read only
Permission denied
“Read only” means that you can only look at the file; you
 cannot save any changes you make. You may have invoked vi in view mode (with view or vi
 -R), or you do not have write permission for the file.
 See the section Problems Saving Files.

	One of the following messages
 appears:
Bad file number
Block special file
Character special file
Directory
Executable
Non-ascii file file non-ASCII
The file you’ve called up to edit is not a regular text
 file. Type :q! to quit, then check the file you wish to edit,
 perhaps with the file
 command.

	When you type :q because of one of the
 previously mentioned difficulties, this message
 appears:
 No write since last change (:quit! overrides).
You have modified the file without realizing it. Type
 :q! to leave vi. Your changes from this session
 will not be saved in the file.

Modus Operandi

 As mentioned earlier, the concept of the current
 “mode” is fundamental to the way vi works. There are two modes, command
 mode and insert mode. You start out
 in command mode, where every keystroke represents a command. In
 insert mode, everything you type becomes text in your file.
Sometimes, you can accidentally enter insert mode, or
 conversely, leave insert mode accidentally. In either case, what you
 type will likely affect your files in ways you did not
 intend.
Press the ESC key to force vi to
 enter command mode. If you are already in command mode, vi will beep at you when you press the
 ESC key. (Command mode is thus sometimes referred to as “beep
 mode.”)
Once you are safely in command mode, you can proceed to repair
 any accidental changes, and then continue editing your text.

Saving and Quitting a File

 You can quit working on a file at any time, save your
 edits, and return to the Unix prompt. The vi command to quit and save edits is
 ZZ. Note that ZZ is capitalized.
Let’s assume that you do create a file called practice to practice vi commands, and that you type in six
 lines of text. To save the file, first check that you are in command
 mode by pressing ESC, and then
 enter ZZ.
	Keystrokes	Results
	ZZ	 "practice" [New file] 6 lines, 320 characters

	 	 Give the write and save command, ZZ. Your file is saved as a
 regular Unix file.

	ls	 ch01 ch02 practice

	 	 Listing the files in the directory shows the
 new file practice that
 you created.

 You can also save your edits with ex commands. Type :w to save (write) your file but not quit
 vi; type :q to quit if you haven’t made any edits;
 and type :wq to both save your edits and quit. (:wq is equivalent to ZZ.) We’ll explain fully how to use
 ex commands in Chapter 5; for now, you should just memorize a few
 commands for writing and saving files.

vi Commands

vi has two modes:
 command mode and insert mode. As soon as you enter a file, you are in
 command mode, and the editor is waiting for you to enter a command.
 Commands enable you to move anywhere in the file, to perform edits, or
 to enter insert mode to add new text. Commands can also be given to
 exit the file (saving or ignoring your edits) in order to return to
 the Unix prompt.
You can think of the different modes as representing two
 different keyboards. In insert mode, your keyboard functions like a
 typewriter. In command mode, each key has a new meaning or initiates
 some instruction.
 There are several ways to tell vi that you want to begin insert mode. One
 of the most common is to press i.
 The i doesn’t appear on the screen,
 but after you press it, whatever you type will
 appear on the screen and will be entered into the buffer. The cursor
 marks the current insertion point.[10] To tell vi that you
 want to stop inserting text, pressESC. Pressing ESC moves the cursor back one space (so that
 it is on the last character you typed) and returns vi to command mode.
For example, suppose you have opened a new file and want to
 insert the word “introduction.” If you type the keystrokes iintroduction, what appears on the screen
 is:
introduction
 When you open a new file, vi starts in command mode and interprets the
 first keystroke (i) as the insert
 command. All keystrokes made after the insert command are considered
 text until you press ESC. If you need
 to correct a mistake while in insert mode, backspace and type over the
 error. Depending on the type of terminal you are using, backspacing
 may erase what you’ve previously typed or may just back up over it. In
 either case, whatever you back up over will be deleted. Note that you
 can’t use the backspace key to back up beyond the point where you
 entered insert mode. (If you have disabled vi compatibility, Vim allows you to
 backspace beyond the point where you entered insert mode.)
vi has an option that lets
 you define a right margin and provides a carriage return automatically
 when you reach it. For right now, while you are inserting text, press
 ENTER to break the lines.
Sometimes you don’t know whether you are in insert mode or
 command mode. Whenever vi does not
 respond as you expect, press ESC once
 or twice to check which mode you are in. When you hear the beep, you
 are in command mode.

[10] Some versions show that you’re in input mode in the status
 line.

Moving the Cursor

 You may spend only a small amount of time in an editing
 session adding new text in insert mode; much of the time you will be
 making edits to existing text.
In command mode you can position the cursor anywhere in the
 file. Since you begin all basic edits (changing, deleting, and copying
 text) by placing the cursor at the text that you want to change, you
 want to be able to move the cursor to that place as quickly as
 possible.
There are vi commands to move
 the cursor:
	Up, down, left, or right—one character
 at a time

	Forward or backward by blocks of text
 such as words, sentences, or paragraphs

	Forward or backward through a file, one
 screen at a time

In Figure 2-1, an underscore marks the
 present cursor position. Circles show movement of the cursor from its
 current position to the position that would result from various
 vi commands.
[image: Sample movement commands]

Figure 2-1. Sample movement commands

Single Movements

 The keys h,
 j, k, and l, right under your fingertips, will move
 the cursor:
	h
	Left, one space

	j
	Down, one line

	k
	Up, one line

	l
	Right, one space

You can also use the cursor arrow keys (←, ↓,
 ↑, →), +
 and - to go up and down, or the
 ENTER and BACKSPACE keys, but they are out of the
 way.
 At first, it may seem awkward to use letter keys instead of arrows
 for cursor movement. After a short while, though, you’ll find it is
 one of the things you’ll like best about vi—you can move around without ever taking
 your fingers off the center of the keyboard.
Before you move the cursor, press ESC to make sure that you are in command
 mode. Use h, j, k,
 and l to move forward or backward
 in the file from the current cursor position. When you have gone as
 far as possible in one direction, you hear a beep and the cursor
 stops. For example, once you’re at the beginning or end of a line,
 you cannot use h or l to wrap around to the previous or next
 line; you have to use j
 or k.[11] Similarly, you cannot move the cursor past a tilde (~)
 representing a line without text, nor can you move the cursor above
 the first line of text.

Numeric Arguments

 You can precede movement commands with numbers. Figure 2-2 shows how the command 4l moves the cursor four spaces to the
 right, just as if you had typed l
 four times (llll).
[image: Multiplying commands by numbers]

Figure 2-2. Multiplying commands by numbers

The ability to multiply commands gives you more options and
 power for each command you learn. Keep this in mind as you are
 introduced to additional commands.

Movement Within a Line

 When you saved the file practice, vi displayed a message telling you how
 many lines are in that file. A line is not
 necessarily the same length as the visible line (often limited to 80
 characters) that appears on the screen. A line is any text entered
 between newlines. (A newline character is
 inserted into the file when you press the ENTER key in insert mode.) If you type 200
 characters before pressing ENTER,
 vi regards all 200 characters as
 a single line (even though those 200 characters visibly take up
 several lines on the screen).
As we mentioned in Chapter 1, vi has an option that allows you to set a
 distance from the right margin at which vi will automatically insert a newline character. This option is wrapmargin (its
 abbreviation is wm). You can set
 a wrapmargin at 10
 characters:
:set wm=10
This command doesn’t affect lines that you’ve already typed.
 We’ll talk more about setting options in Chapter 7. (This one really couldn’t wait!)
If you do not use vi’s
 automatic wrapmargin option, you
 should break lines with carriage returns to keep the lines of
 manageable length.
 Two useful commands that involve movement within a
 line are:

	0 (digit
 zero)
	 Move to beginning of line.

	$
	 Move to end of line.

 In the following example, line numbers are displayed.
 (Line numbers can be displayed in vi by using the number option, which is enabled by typing
 :setnu in command mode. This operation is
 described in Chapter 7.)
 1 With a screen editor you can scroll the page,
 2 move the cursor,delete lines, insert characters,
 and more, while seeing the results of your edits
 as you make them.
 3 Screen editors are very popular.

The number of logical lines (3) does not
 correspond to the number of visible lines (5) that you see on the
 screen. If the cursor were positioned on the d
 in the word delete, and you entered $, the cursor would move to the period
 following the word them. If you entered
 0, the cursor would move back to
 the letter m in the word
 move, at the beginning of line two.

Movement by Text Blocks

 You can also move the cursor by blocks of text:
 words, sentences, paragraphs, etc. The w command
 moves the cursor forward one word at a time, counting symbols and
 punctuation as equivalent to words. The following line shows cursor
 movement by w:
cursor,delete lines,insert characters,
 You can also move by word, not counting symbols and
 punctuation, using the W command.
 (You can think of this as a “large” or “capital”
 Word.)
Cursor movement using W
 looks like this:
cursor,delete lines, insert characters,
 To move backward by word, use the b command. Capital B allows you to move backward by word, not
 counting punctuation.
As mentioned previously, movement commands take numeric
 arguments; so, with either the w
 or b commands you can multiply
 the movement with numbers. 2w
 moves forward two words; 5B moves
 back five words, not counting punctuation.
To move to a specific line, you can use the G command. Plain G goes to the end of the file, 1G goes to the top of the file, and
 42G goes to line 42. This is
 described in more detail later in the section The G (Go To) Command.
We’ll discuss movement by sentences and by paragraphs in Chapter 3. For now, practice using the cursor movement
 commands that you know, combining them with numeric multipliers.

[11] Vim, with nocompatible
 set, allows you to “space past” the end of the line to the next
 one with l or the space
 bar.

Simple Edits

When you enter text in your file, it is rarely perfect. You find
 typos or want to improve on a phrase; sometimes your program has a
 bug. Once you enter text, you have to be able to change it, delete it,
 move it, or copy it. Figure 2-3 shows the kinds
 of edits you might want to make to a file. The edits are indicated by
 proofreading marks.
[image: Proofreading edits]

Figure 2-3. Proofreading edits

 In vi you can
 perform any of these edits with a few basic keystrokes: i for insert (which you’ve already seen);
 a for append; c for change; and d for delete. To move or copy text, you use
 pairs of commands. You move text with a d for “delete,” then a p for “put”; you copy text with a y for “yank,” then a p for “put.” Each type of edit is described
 in this section. Figure 2-4 shows the vi commands you use to make the edits marked
 in Figure 2-3.
[image: Edits with vi commands]

Figure 2-4. Edits with vi commands

Inserting New Text

You have already seen the insert command used to enter text
 into a new file. You also use the insert command while editing
 existing text to add missing characters, words, and sentences. In
 the file practice, suppose you
 have the sentence:
 you can scroll
 the page, move the cursor, deletelines, and insert characters.

with the cursor positioned as shown. To insert With
 a screen editor at the beginning of the sentence, enter
 the following:
	Keystrokes	Results
	2k	you can scroll
 the page, move the cursor, delete
 lines, and insert characters.
 Move the cursor up two lines
 with the k command, to
 the line where you want to make the insertion.

	iWith a	 With a you can scroll
 the page, move the cursor, delete
 lines, and insert characters.
 Press i to enter insert mode and begin
 inserting text.

	screen
 editor ESC	 With a screen editor you can scroll
 the page, move the cursor, delete
 lines, and insert characters.
 Finish inserting text, and
 press ESC to end the insert
 and return to command mode.

Appending Text

 You can append text at any place in your file with
 the append command, a. This works
 in almost the same way as i,
 except that text is inserted after the cursor
 rather than before the cursor. You may have
 noticed that when you press i to
 enter insert mode, the cursor doesn’t move until after you enter
 some text. By contrast, when you press a to enter insert mode, the cursor moves
 one space to the right. When you enter text, it appears after the
 original cursor position.

Changing Text

 You can replace any text in your file with the change
 command, c. To tell c how much text to change, you combine
 c with a movement command. In
 this way, a movement command serves as a text
 object for the c
 command to affect. For example, c
 can be used to change text from the cursor:
	cw
	To the end of a word

	c2b
	Back two words

	c$
	To the end of line

	c0
	To the beginning of line

After issuing a change command, you can replace the identified
 text with any amount of new text, with no characters at all, with
 one word, or with hundreds of lines. c, like i and a, leaves you in insert mode until you
 press the ESC key.
 When the change affects only the current line,
 vi marks the end of the text that
 will be changed with a $, so that
 you can see what part of the line is affected. (See the example for
 cw, next.)
Words

 To change a word, combine the c (change) command with w for word. You can replace a word
 (cw) with a longer or shorter
 word (or any amount of text). cw can be thought of as “delete the word
 marked and insert new text until ESC is pressed.”
Suppose you have the following line in your file practice:
With an editor you can scroll the page,
and want to change an to a
 screen. You need to change only one word:
	Keystrokes	Results
	w	 Withan editor you can scroll the page,

 Move with w to
 the place you want the edit to begin.

	cw	 Witha$ editor you can scroll the page,

 Give the change word command. The end of the text
 to be changed will be marked with a $ (dollar sign).

	a screen	 With a screen editor you can scroll the page,

 Type in the replacement text, and then press
 ESC to return to command
 mode.

cw also works on a
 portion of a word. For example, to change
 spelling to spelled, you
 can position the cursor on the i, type
 cw, then type
 ed, and finish with ESC.
General Form of vi Commands
In the change commands we’ve mentioned up to this point,
 you may have noticed the following pattern:
(command)(text
 object)

command is the change command
 c, and text
 object is a movement command (you don’t type the
 parentheses). But c is not
 the only command that requires a text object. The d command (delete) and the y command (yank) follow this pattern
 as well.
Remember also that movement commands take numeric
 arguments, so numbers can be added to the text objects of
 c, d, and y commands. For example, d2w and 2dw are commands to delete two words.
 With this in mind, you can see that most vi commands follow a general
 pattern:
(command)(number)(text
 object)

or the equivalent form:
(number)(command)(text
 object)

Here’s how this works. number and
 command are optional. Without them, you
 simply have a movement command. If you add a
 number, you have a multiple movement. On
 the other hand, combine a command (c, d, or y) with a text
 object to get an editing command.
When you realize how many combinations are possible in
 this way, vi becomes a
 powerful editor
 indeed!

Lines

 To replace the entire current line, use the special
 change command, cc. cc changes an entire line, replacing
 that line with any amount of text entered before pressing ESC. It doesn’t matter where the cursor
 is located on the line; cc
 replaces the entire line of text.
A command like cw works
 differently from a command like cc. In using cw, the old text remains until you type
 over it, and any old text that is left over (up to the $) goes away when you press ESC. In using cc, though, the old text is wiped out
 first, leaving you a blank line on which to insert text.
 The “type over” approach happens with any change
 command that affects less than a whole line, whereas the “blank
 line” approach happens with any change command that affects one or
 more lines.
C replaces
 characters from the current cursor position to the end of the
 line. It has the same effect as combining c with the special end-of-line indicator
 $ (c$).
The commands cc and
 C are really shortcuts for
 other commands, so they don’t follow the general form of vi commands. You’ll see other shortcuts
 when we discuss the delete and yank commands.

Characters

 One other replacement edit is given by the r command. r replaces a single character with another single
 character. You do not have to press ESC to return to command mode after
 making the edit. There is a misspelling in the line below:
Pith a screen editor you can scroll the page,

Only one letter needs to be corrected. You don’t want to use
 cw in this instance because you
 would have to retype the entire word. Use r to replace a single character at the
 cursor:
	Keystrokes	Results
	rW	With a screen editor you can scroll the page,

 Give the replace command r, followed by the replacement
 character W.

Substituting text

 Suppose you want to change just a few characters,
 and not a whole word. The substitute command (s), by itself, replaces a single
 character. With a preceding count, you can replace that many
 characters. As with the change command (c), the last character of the text will
 be marked with a $ so that you
 can see how much text will be changed.
 The S command,
 as is usually the case with uppercase commands, lets you change
 whole lines. In contrast to the C command, which changes the rest of the
 line from the current cursor position, the S command deletes the entire line, no
 matter where the cursor is. vi
 puts you in insert mode at the beginning of the line. A preceding
 count replaces that many lines.
Both s and S put you in insert mode; when you are
 finished entering new text, press ESC.
 The R command,
 like its lowercase counterpart, replaces text. The difference is
 that R simply enters overstrike
 mode. The characters you type replace what’s on the screen,
 character by character, until you type ESC. You can overstrike a maximum of only
 one line; as you type ENTER,
 vi will open a new line,
 effectively putting you into insert mode.

Changing Case

Changing the case of a letter is a special form of
 replacement. The tilde (~)
 command will change a lowercase letter to uppercase or an uppercase
 letter to lowercase. Position the cursor on the letter whose case
 you want to change, and type a ~.
 The case of the letter will change, and the cursor will move to the
 next character.
In older versions of vi,
 you cannot specify a numeric prefix or text object for the ~ to affect. Modern versions do allow a
 numeric prefix.
 If you want to change the case of more than one line
 at a time, you must filter the text through a Unix command such as
 tr, as described in Chapter 7.

Deleting Text

 You can also delete any text in your file with the
 delete command, d. Like the
 change command, the delete command requires a text object (the
 amount of text to be operated on). You can delete by word (dw), by line (dd and D), or by other movement commands that you
 will learn later.
With all deletions, you move to where you want the edit to
 take place, then give the delete command (d) and the text object, such as w for word.
Words

 Suppose you have the following text in the
 file:

Screen editors are are very popular,
 since they allowed you to make
 changes as you read through a file.

with the cursor positioned as shown. You want to delete one
 are in the first line:
	Keystrokes	Results
	2w	 Screen editorsare are very popular,
 since they allowed you to make
 changes as you read through a file.
 Move the cursor to where
 you want the edit to begin (are).

	dw	 Screen editorsare very popular,
 since they allowed you to make
 changes as you read through a file.
 Give the delete word
 command (dw) to delete
 the word are.

dw deletes a word
 beginning where the cursor is positioned. Notice that the space
 following the word is deleted.
dw can also be used to
 delete a portion of a word. In this example:
 since they allowed you to make

you want to delete the ed from the end
 of allowed.
	Keystrokes	Results
	dw	 since they allowyou to make

 Give the delete word command (dw) to delete the word,
 beginning with the position of the cursor.

dw always deletes the
 space before the next word on a line, but we don’t want to do that
 in this example. To retain the space between words, use de, which deletes only to the end of a
 word. Typing dE deletes to the
 end of a word, including punctuation.
 You can also delete backward (db) or to the end or beginning of a line
 (d$ or d0).

Lines

 The dd command
 deletes the entire line that the cursor is on. dd will not delete part of a line. Like
 its complement, cc, dd is a special command. Using the same
 text as in the previous example, with the cursor positioned on the
 first line as shown here:
 Screen editorsare very popular,
 since they allow you to make
 changes as you read through a file.

you can delete the first two lines:
	Keystrokes	Results
	2dd	changes as you read through a file.

 Give the command to delete two lines (2dd). Note that even though the
 cursor was not positioned on the beginning of the line,
 the entire line is deleted.

 The D command
 deletes from the cursor position to the end of the line. (D is a shortcut for d$.) For example, with the cursor
 positioned as shown:
 Screen editors are very popular,
 since they allow you to make
 changesas you read through a file.

you can delete the portion of the line to the right of the
 cursor:
	Keystrokes	Results
	D	 Screen editors are very popular,
 since they allow you to make
 changes
 Give the
 command to delete the portion of the line to the right of
 the cursor (D).

Characters

 Often you want to delete only one or two
 characters. Just as r is a
 special change command to replace a single character, x is a special delete command to delete
 a single character. x deletes
 only the character the cursor is on. In the line here:
zYou can move text by deleting text and then
you can delete the letter z by pressing
 x.[12] A capital X
 deletes the character before the cursor. Prefix either of these commands with a number to
 delete that number of characters. For example, 5x will delete the five characters under
 and to the right of the cursor.

Problems with deletions

	You’ve deleted the wrong text and you want to
 get it back.
There are several ways to recover deleted text. If
 you’ve just deleted something and you realize you want it
 back, simply type u to undo
 the last command (for example, a dd). This works only if you haven’t given any further
 commands, since u undoes
 only the most recent command. Alternatively, a U will restore the line to its
 pristine state, the way it was before any
 changes were applied to it.
 You can still recover a recent deletion,
 however, by using the p
 command, since vi saves the
 last nine deletions in nine numbered deletion buffers. If you
 know, for example, that the third deletion back is the one you
 want to restore, type:
"3p
to “put” the contents of buffer number 3 on the line
 below the cursor.
This works only for a deleted line.
 Words, or a portion of a line, are not saved in a buffer.
 If you want to restore a deleted word or line
 fragment, and u won’t work,
 use the p command by
 itself. This restores whatever you’ve last deleted. The next
 few subsections will talk more about the commands u and p.
Note that Vim supports “infinite” undo, which makes life
 much easier. See the section Undoing Undos for more
 information.

Moving Text

 In vi, you move
 text by deleting it and then placing that deleted text elsewhere in
 the file, like a “cut and paste.” Each time you delete a text block,
 that deletion is temporarily saved in a special buffer. Move to
 another position in your file and use the put command (p) to place that text in the new position.
 You can move any block of text, although moving is more useful with
 lines than with words.
 The put command (p) puts the text that is in the buffer
 after the cursor position. The uppercase
 version of the command,P, puts the text
 before the cursor. If you delete one or more
 lines, p puts the deleted text on
 a new line(s) below the cursor. If you delete less than an entire
 line, p puts the deleted text
 into the current line, after the cursor.
Suppose in your file practice you have the text:
 You can move text by deleting it and then,like a "cut and paste,"
 placing the deleted text elsewhere in the file.
 each time you delete a text block.

and you want to move the second line, like a “cut
 and paste,” below the third line. Using delete, you can
 make this edit:
	Keystrokes	Results
	dd	 You can move text by deleting it and then,placing the deleted text elsewhere in the file.
 each time you delete a text block.
 With the cursor on the
 second line, delete that line. The text is placed in a
 buffer (reserved memory).

	p	 You can move text by deleting it and then,
 placing that deleted text elsewhere in the file.like a "cut and paste"
 each time you delete a text block.
 Give the put command,
 p, to restore the deleted
 line at the next line below the cursor. To finish reordering
 this sentence, you would also have to change the
 capitalization and punctuation (with r) to match the new structure.

Note
 Once you delete text, you must restore it before
 the next change command or delete command. If you make another
 edit that affects the buffer, your deleted text will be lost. You
 can repeat the put over and over, so long as you don’t make a new
 edit. In Chapter 4, you will learn how to save
 text you delete in a named buffer so that you can retrieve it
 later.

Transposing two letters

 You can use xp
 (delete character and put after cursor) to transpose two letters.
 For example, in the word mvoe, the letters
 vo are transposed (reversed). To correct a
 transposition, place the
 cursor on v and press x, then p. By coincidence, the word
 transpose helps you remember the sequence
 xp; x stands for trans,
 and p stands for
 pose.
 There is no command to transpose words. The section
 More Examples of Mapping Keys discusses a short sequence of
 commands that transposes two words.

Copying Text

 Often you can save editing time (and keystrokes) by
 copying a part of your file to use in other places. With the two commands y (for yank) and p (for put), you can copy any amount of
 text and put that copied text in another place in the file. A yank
 command copies the selected text into a special buffer, where it is
 held until another yank (or deletion) occurs. You can then place
 this copy elsewhere in the file with the put command.
As with change and delete, the yank command can be combined
 with any movement command (yw,
 y$, 4yy). Yank is most frequently used with a
 line (or more) of text, because to yank and put a word usually takes
 longer than simply to insert the word.
 The shortcut yy
 operates on an entire line, just as dd and cc do. But the shortcut Y, for some reason, does not operate the
 way D and C do. Instead of yanking from the current
 position to the end of the line, Y yanks the whole line; that is, Y does the same thing as yy.
Suppose you have in your file practice the text:
With a screen editor you can
 scroll the page.
 move the cursor.
 delete lines.

You want to make three complete sentences, beginning each with
 With a screen editor you can. Instead of moving
 through the file, making this edit over and over, you can use a yank
 and put to copy the text to be added.
	Keystrokes	Results
	yy	 With ascreen editor you can
 scroll the page.
 move the cursor.
 delete lines.
 Yank the line of text that you want to copy
 into the buffer. The cursor can be anywhere on the line you
 want to yank (or on the first line of a series of lines).

	2j	 With a screen editor you can
 scroll the page.move the cursor.
 delete lines.
 Move the cursor to where you want to put the
 yanked text.

	P	 With a screen editor you can
 scroll the page.With a screen editor you can
 move the cursor.
 delete lines.
 Put the yanked text above the cursor line with
 P.

	jp	 With a screen editor you can
 scroll the page.
 With a screen editor you can
 move the cursor.With a screen editor you can
 delete lines.
 Move the cursor down a line and put the yanked
 text below the cursor line with p.

 Yanking uses the same buffer as deleting. Each new
 deletion or yank replaces the previous contents of the yank buffer.
 As we’ll see in Chapter 4, up to nine previous
 yanks or deletions can be recalled with put commands. You can also
 yank or delete directly into up to 26 named buffers, which allows
 you to juggle multiple text blocks at once.

Repeating or Undoing Your Last Command

 Each edit command that you give is stored in a
 temporary buffer until you give the next command. For example, if
 you insert the after a word in your file, the
 command used to insert the text, along with the text that you
 entered, is temporarily saved.
Repeat

 Any time you make the same editing command over and
 over, you can save time by duplicating it with the repeat command,
 the period (.). Position the cursor where you want to repeat the
 editing command, and type a period.
Suppose you have the following lines in your file:
 With a screen editor you can
 scroll the page.With a screen editor you can
 move the cursor.

You can delete one line, and then, to delete another line,
 simply type a period.
	Keystrokes	Results
	dd	 With a screen editor you can
 scroll the page.move the cursor.

 Delete a line with the command dd.

	.	 With a screen editor you canscroll the page.

 Repeat the deletion.

 Older versions of vi have problems repeating commands. For
 example, such versions may have difficulty repeating a long
 insertion when wrapmargin is
 set. If you have such a version, this bug will probably bite you
 sooner or later. There’s not a lot you can do about it after the
 fact, but it helps to be forewarned. (Modern versions do not seem
 to have this problem.) There are two ways you can guard against a
 potential problem when repeating long insertions. You can write
 your file (:w) before repeating
 the insertion (returning to this copy if the insertion doesn’t
 work correctly). You can also turn off wrapmargin like this:
:set wm=0
In the later section More Examples of Mapping Keys,
 we’ll show you an easy way to use the wrapmargin solution. In some versions of vi, the command CTRL-@ repeats the most recent insertion.
 CTRL-@ is typed in insert mode
 and returns you to command mode.

Undo

 As mentioned earlier, you can undo your last
 command if you make an error. Simply press u. The cursor need not be on the line
 where the original edit was made.
To continue the previous example, showing deletion of lines
 in the file practice:
	Keystrokes	Results
	u	 With a screen editor you can
 scroll the page.move the cursor.

 u undoes the last
 command and restores the deleted line.

U, the uppercase
 version of u, undoes all edits
 on a single line, as long as the cursor remains on that
 line. Once you move off a line, you can no longer use
 U.
Note that you can undo your last undo with u, toggling between two versions of
 text. u will also undo U, and U will undo any changes to a line,
 including those made with u.
Tip
A tip: the fact that u
 can undo itself leads to a nifty way to get around in a file. If
 you ever want to get back to the site of your last edit, simply
 undo it. You will pop back to the appropriate line. When you
 undo the undo, you’ll stay on that line.

Vim lets you use CTRL-R to
 “redo” an undone operation. Combined with infinite undo, you can
 move backward and forward through the history of changes to your
 file. See the section Undoing Undos
 for more information.

[12] The mnemonic for x is
 that it is supposedly like “x-ing out” mistakes with a
 typewriter. Of course, who uses a typewriter anymore?

Joining Two Lines with J

 Sometimes while editing a file you end up with a series
 of short lines that are difficult to scan. When you want to merge two
 lines into one, position the cursor anywhere on the first line, and
 press J to join the two
 lines.
Suppose your file practice
 reads:
With a
 screen editor
 you can
 scroll the page, move the cursor

	Keystrokes	Results
	J	With a screen editor
 you can
 scroll the page, move the cursor
 J joins the line the cursor is on
 with the line below.

	.	With a screen editor you can
 scroll the page, move the cursor
 Repeat the last command
 (J) with the . to join the next line with the
 current line.

Using a numeric argument with J joins that number of consecutive lines. In
 the example here, you could have joined three lines by using the
 command 3J.
Problem Checklist

	When you type commands, text jumps around on the
 screen and nothing works the way it’s supposed
 to.
Make sure you’re not typing the J command when you mean j.
 You may have hit the CAPS
 LOCK key without noticing it. vi is case-sensitive; that is,
 uppercase commands (I,
 A, J, etc.) are different from lowercase
 commands (i, a, j), and if you hit this key, all your
 commands are interpreted not as lowercase but as uppercase
 commands. Press the CAPS LOCK
 key again to return to lowercase, press ESC to ensure that you are in command
 mode, and then type either U
 to restore the last line changed or u to undo the last command. You’ll
 probably also have to do some additional editing to fully
 restore the garbled part of your file.

Movement by Screens

When you read a book, you think of “places” in the book in terms
 of pages: the page where you stopped reading or the page number in an
 index. You don’t have this convenience when you’re editing files. Some
 files take up only a few lines, and you can see the whole file at
 once. But many files have hundreds (or thousands!) of lines.
You can think of a file as text on a long roll of paper. The
 screen is a window of (usually) 24 lines of text on that long
 roll.
 In insert mode, as you fill up the screen with text,
 you will end up typing on the bottom line of the screen. When you
 reach the end and press ENTER, the
 top line rolls out of sight, and a blank line appears on the bottom of
 the screen for new text. This is called
 scrolling.
In command mode, you can move through a file to see any text in
 it by scrolling the screen ahead or back. And, since cursor movements
 can be multiplied by numeric prefixes, you can move quickly to
 anywhere in your file.
Scrolling the Screen

 There are vi
 commands to scroll forward and backward through the file by full and
 half screens:
	^F
	Scroll forward one screen.

	^B
	Scroll backward one screen.

	^D
	Scroll forward half screen (down).

	^U
	Scroll backward half screen (up).

(In this list of commands, the ^ symbol represents the CTRL key. So ^F means to hold down the CTRL key and press the f key simultaneously.)
 There are also commands to scroll the screen up one
 line (^E) and down one line
 (^Y). However, these two commands
 do not send the cursor to the beginning of the line. The cursor
 remains at the same point in the line as when the command was
 issued.

Repositioning the Screen with z

 If you want to scroll the screen up or down, but you
 want the cursor to remain on the line where you left it, use the
 z command.
	z ENTER
	Move current line to top of screen and scroll.

	z.
	Move current line to center of screen and scroll.

	z-
	Move current line to bottom of screen and scroll.

With the z command, using a
 numeric prefix as a multiplier makes no sense. (After all, you would
 need to reposition the cursor to the top of the screen only once.
 Repeating the same z command
 wouldn’t move anything.) Instead, z understands a numeric prefix as a line
 number that it will use in place of the current line. For example,
 z ENTER moves the current line to the top of
 the screen, but 200z ENTER moves line 200 to the top of the
 screen.

Redrawing the Screen

 Sometimes while you’re editing, messages from your
 computer system will display on your screen. These messages don’t
 become part of your editing buffer, but they do interfere with your
 work. When system messages appear on your screen, you need to
 redisplay, or redraw, the screen.
Whenever you scroll, you redraw part of (or all of) the
 screen, so you can always get rid of unwanted messages by scrolling
 them off the screen and then returning to your previous position.
 But you can also redraw the screen without scrolling, by typing
 CTRL-L.

Movement Within a Screen

 You can also keep your current screen, or view of the
 file, and move around within the screen using:
	H
	Move to home—the top line on screen.

	M
	Move to middle line on screen.

	L
	Move to last line on screen.

	n H
	Move to n lines below top
 line.

	n L
	Move to n lines above last
 line.

H moves the cursor from
 anywhere on the screen to the first, or “home,” line. M moves to the middle line, L to the last. To move to the line below
 the first line, use 2H.
	Keystrokes	Results
	L	 With a screen editor you can
 scroll the page, move the cursor,
 delete lines, insert characters, and more,
 while seeing the results of your
 edits as you make them.
 Screen editors are very popular,
 since they allow you to make changesas you read through a file.

 Move to the last line of the screen with the L command.

	2H	 With a screen editor you canscroll the page, move the cursor,
 delete lines, insert characters, and more,
 while seeing the results of your
 edits as you make them.
 Screen editors are very popular,
 since they allow you to make changes
 as you read through a file.
 Move to the second line of the
 screen with the 2H
 command. (H alone moves
 to the top line of the screen.)

Movement by Line

 Within the current screen there are also commands to
 move by line. You’ve already seen j and k. You can also use:
	ENTER
	Move to first character of next line.

	+
	Move to first character of next line.

	-
	Move to first character of previous line.

These three commands move down or up to the first
 character of the line, ignoring any spaces or
 tabs. j and k, by contrast, move the cursor down or up
 to the first position of a line, even if that position is blank (and
 assuming that the cursor started at the first position).
Movement on the current line

 Don’t forget that h and l move the cursor to the left and right,
 and that 0 (zero) and $ move the cursor to the beginning or
 end of the line. You can also use:
	^
	Move to first nonblank character of current line.

	n |
	Move to column n of current line.

As with the line movement commands shown earlier, ^ moves to the first
 character of the line, ignoring any spaces or
 tabs. 0, by contrast, moves to
 the first position of the line, even if that position is
 blank.

Movement by Text Blocks

 Another way that you can think of moving through a
 vi file is by text blocks—words,
 sentences, paragraphs, or sections.
You have already learned to move forward and backward by word
 (w, W, b or
 B). In addition, you can use these
 commands:
	e
	Move to end of word.

	E
	Move to end of word (ignore punctuation).

	(
	Move to beginning of current sentence.

)
	Move to beginning of next sentence.

	{
	Move to beginning of current paragraph.

	}
	Move to beginning of next paragraph.

	[[
	Move to beginning of current section.

]]
	Move to beginning of next section.

 To find the end of a sentence, vi looks for one of these punctuation marks:
 ?, ., or !.
 vi locates the end of a sentence
 when the punctuation is followed by at least two spaces or when it
 appears as the last nonblank character on a line. If you have left
 only a single space following a period, or if the sentence ends with a
 quotation mark, vi won’t recognize
 the sentence.
 A paragraph is defined as text up to the next blank
 line, or up to one of the default paragraph macros (.IP, .PP,
 .LP, or .QP) from the troff MS macro package. Similarly, a section
 is defined as text up to the next default section macro (.NH, .SH,
 .H 1, or .HU). The macros that are recognized as
 paragraph or section separators can be customized with the :set command, as described in Chapter 7.
Remember that you can combine numbers with movement. For
 example, 3) moves ahead three
 sentences. Also remember that you can edit using movement commands:
 d) deletes to the end of the
 current sentence, 2y} copies
 (yanks) two paragraphs ahead.

Movement by Searches

 One of the most useful ways to move around quickly in a
 large file is by searching for text, or more properly, a
 pattern of characters. Sometimes a search can be
 performed to find a misspelled word or to find each occurrence of a
 variable in a program.
 The search command is the special character / (slash). When you enter a slash, it
 appears on the bottom line of the screen; you then type in the
 pattern that you want to find: /pattern.
 A pattern can be a whole word or any other sequence of
 characters (called a “character string”). For example, if you search
 for the characters red, you will match
 red as a whole word, but you’ll also match
 occurred. If you include a space before or after
 pattern, the spaces will be treated as part of
 the word. As with all bottom-line commands, press ENTER to finish. vi, like all other Unix editors, has a
 special pattern-matching language that allows you to look for
 variable text patterns: for example, any word beginning with a capital
 letter, or the word The at the beginning of a
 line.
We’ll talk about this more powerful pattern-matching syntax in
 Chapter 6. For right now, think of a
 pattern simply as a word or phrase.
vi begins the search
 at the cursor and searches forward, wrapping around to the start of
 the file if necessary. The cursor will move to the first occurrence of
 the pattern. If there is no match, the message “Pattern not found” will be shown on the status
 line.[14]
Using the file practice,
 here’s how to move the cursor by searches:
	Keystrokes	Results
	/edits	 With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of youredits as you make them.

 Search for the pattern edits.
 Press ENTER to enter. The
 cursor moves directly to that pattern.

	/scr	 With ascreen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.
 Search for the
 pattern scr. Press ENTER to enter. Note that there is no
 space after scr.

The search wraps around to the front of the file. Note that you
 can give any combination of characters; a search does not have to be
 for a complete word.
 To search backward, type a ? instead of a /:
?pattern
In both cases, the search wraps around to the beginning or end
 of the file, if necessary.
Repeating Searches

 The last pattern that you searched for stays
 available throughout your editing session. After a search, instead
 of repeating your original keystrokes, you can use a command to
 search again for the last pattern:
	n
	Repeat search in same direction.

	N
	Repeat search in opposite direction.

	/ ENTER
	Repeat search forward.

	? ENTER
	Repeat search backward.

Since the last pattern stays available, you can search for a
 pattern, do some work, and then search again for the same pattern
 without retyping it by using n,
 N, /, or ?. The direction of your search (/ is forward, ? is backward) is displayed at the bottom
 left of the screen. (nvi does not
 show the direction for the n and
 N commands. Vim puts the search
 text into the command line too, and lets you scroll through a saved
 history of search commands, using the up and down arrow
 keys.)
To continue with the previous example, since the pattern
 scr is still available for search, you can do
 the following:
	Keystrokes	Results
	n	 With a screen editor you canscroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.
 Move to the next
 instance of the pattern scr (from
 screen to scroll)
 with the n (next)
 command.

	?you	 With a screen editoryou can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.
 Search backward with
 ? from the cursor to the
 first occurrence of you. You need to
 press ENTER after typing
 the pattern.

	N	 With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results ofyour edits as you make them.

 Repeat the previous search for
 you but in the opposite direction
 (forward).

 Sometimes you want to find a word only if it is
 further ahead; you don’t want the search to wrap around earlier in
 the file. vi has an option,
 wrapscan, that controls whether
 searches wrap. You can disable wrapping like this:
:set nowrapscan
 When nowrapscan is
 set and a forward search fails, the status line displays the
 message:
Address search hit BOTTOM without matching pattern
When nowrapscan is set and
 a backward search fails, the message displays “TOP” instead of “BOTTOM.”
Changing through searching

 You can combine the / and ? search operators with the commands
 that change text, such as c and
 d. Continuing with the previous
 example:
	Keystrokes	Results
	d?move	 With a screen editor you can scroll the
 page,your edits as you make them.

 Delete from before the cursor up to and through the
 word move.

Note how the deletion occurs on a character basis, and whole
 lines are not deleted.
This section has given you only the barest introduction to
 searching for patterns. Chapter 6, will teach
 you more about pattern matching and its use in making global
 changes to a file.

Current Line Searches

 There are also miniature versions of the search
 commands that operate within the current line. The command fx moves the
 cursor to the next instance of the character x
 (where x stands for any character). The command
 tx
 moves the cursor to the character before the
 next instance of x. Semicolons can then be used
 repeatedly to “find” your way along.
The inline search commands are summarized here. None of these
 commands will move the cursor to the next line:
	f
 x
	Find (move cursor to) next occurrence of
 x in the line, where
 x stands for any character.

	F
 x
	Find (move cursor to) previous occurrence of
 x in the line.

	t
 x
	Find (move cursor to) character
 before next occurrence of
 x in the line.

	T
 x
	Find (move cursor to) character
 after previous occurrence of
 x in the line.

	;
	Repeat previous find command in same direction.

	,
	Repeat previous find command in opposite direction.

With any of these commands, a numeric prefix
 n locates the nth
 occurrence. Suppose you are editing in practice, on this line:
With a screen editor you can scroll the
	Keystrokes	Results
	fo	 With a screen editor you can scroll the

 Find the first occurrence of o
 in your current line with f.

	;	 With a screen editor you can scroll the

 Move to the next occurrence of o
 with the ; command (find
 next o).

dfx deletes up
 to and including the named character x. This
 command is useful in deleting or yanking partial lines. You might
 need to use dfx instead of
 dw if there are symbols or
 punctuation within the line that make counting words difficult. The
 t command works just like
 f, except that it positions the
 cursor before the character searched for. For example, the command
 ct. could be used to change text
 up to the end of a sentence, leaving the period.

[14] The exact message varies with different vi clones, but their meanings are the
 same. In general, we won’t bother noting everywhere that the text
 of a message may be different; in all cases the information
 conveyed is the same.

Movement by Line Number

 Lines in a file are numbered sequentially, and you can
 move through a file by specifying line numbers.
Line numbers are useful for identifying the beginning and end of
 large blocks of text you want to edit. Line numbers are also useful
 for programmers, since compiler error messages refer to line numbers.
 Finally, line numbers are used by ex commands, which you will learn in the
 next chapters.
If you are going to move by line numbers, you must have a way to
 identify them. Line numbers can be displayed on the screen using the :set nu
 option described in Chapter 7. In vi, you can also display the current line
 number on the bottom of the screen.
 The command CTRL-G
 causes the following to be displayed at the bottom of your screen: the
 current line number, the total number of lines in the file, and what
 percentage of the total the present line number represents. For
 example, for the file practice,
 CTRL-G might display:
"practice" line 3 of 6 --50%--
CTRL-G is useful either for
 displaying the line number to use in a command or for orienting
 yourself if you have been distracted from your editing session.
Depending upon the implementation of vi you’re using, you may see additional
 information, such as what column the cursor is on, and an indication
 as to whether the file has been modified but not yet written out. The
 exact format of the message will vary as well.
The G (Go To) Command

 You can use line numbers to move the cursor through a
 file. The G (go to) command uses
 a line number as a numeric argument and moves directly to that line.
 For instance, 44G moves the
 cursor to the beginning of line 44. G without a line number moves the cursor
 to the last line of the file.
 Typing two backquotes (``) returns you to your original position
 (the position where you issued the last G command), unless you have done some
 edits in the meantime. If you have made an edit and then moved the
 cursor using some command other than G, ``
 will return the cursor to the site of your last edit. If you have
 issued a search command (/ or
 ?), `` will return the cursor to its position
 when you started the search. A pair of apostrophes ('') works much like two backquotes, except
 that it returns the cursor to the beginning of the line instead of
 the exact position on that line where your cursor had been.
The total number of lines shown with CTRL-G can be used to give yourself a rough
 idea of how many lines to move. If you are on line 10 of a
 1,000-line file:
"practice" line 10 of 1000 --1%--
and you know that you want to begin editing near the end of
 that file, you could give an approximation of your destination with
 800G.
Movement by line number is a tool that can move you quickly
 from place to place through a large file.

Chapter 5. Introducing the ex Editor

 If this is a book on vi, why would we include a chapter on another
 editor? Well, ex is not really
 another editor. vi is the visual mode
 of the more general, underlying line editor, which is ex. Some ex
 commands can be useful to you while you are working in vi, since they can save you a lot of editing
 time. Most of these commands can be used without ever leaving vi.[18]
You already know how to think of files as a sequence of numbered
 lines. ex gives you editing commands
 with greater mobility and scope. With ex, you can move easily between files and
 transfer text from one file to another in a variety of ways. You can
 quickly edit blocks of text larger than a single screen. And with global
 replacement you can make substitutions throughout a file for a given
 pattern.
This chapter introduces ex and
 its commands. You will learn how to:
	Move around a file by using line numbers

	Use ex commands to copy,
 move, and delete blocks of text

	Save files and parts of files

	Work with multiple files (reading in text or commands,
 traveling between files)

[18] vile is different from the
 other clones in that many of the more advanced ex commands simply don’t work. Instead of
 noting each command here, we provide more details in Chapter 18.

Editing Multiple Files

ex commands enable
 you to switch between multiple files. The advantage of editing
 multiple files is speed. If you are sharing the system with other
 users, it takes time to exit and reenter vi for each file you want to edit. Staying
 in the same editing session and traveling between files is not only
 faster for access, but you also save abbreviations and command
 sequences that you have defined (see Chapter 7), and
 you keep yank buffers so that you can copy text from one file to
 another.
Invoking vi on Multiple Files

 When you first invoke vi, you can name more than one file to
 edit, and then use ex commands to
 travel between the files. For example:
$vi file1 file2
edits file1 first. After
 you have finished editing the first file, the ex command :w writes (saves) file1 and :n calls in the next file (file2).
Suppose you want to edit two files, practice and note:
	Keystrokes	Results
	vi practice note	With a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 Open the two files
 practice and note. The first-named file,
 practice, appears on
 your screen. Perform any edits.

	:w	 "practice" 6 lines, 328 characters

 Save the edited file practice with the ex command w. Press ENTER.

	:n	Dear Mr.
 Henshaw:
 Thank you for the prompt . . .
 Call in the next file,
 note, with the ex command n. Press ENTER. Perform any edits.

	:x	 "note" 23 lines, 1343 characters

 Save the second file, note, and quit the editing
 session.

Using the Argument List

ex actually lets
 you do more than just move to the next file in the argument list
 with :n. The :args command (abbreviated :ar) lists the files named on the command
 line, with the current file enclosed in brackets.
	Keystrokes	Results
	vi practice note	With a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 Open the two files
 practice and note. The first-named file,
 practice, appears on
 your screen.

	:args	 [practice] note

 vi displays the
 argument list in the status line, with brackets around the
 current filename.

 The :rewind
 (:rew) command resets the current
 file to be the first file named on the command line. elvis and Vim provide a corresponding
 :last command to move to the last
 file on the command line.

Calling in New Files

 You don’t have to call in multiple files at the
 beginning of your editing session. You can switch to another file at
 any time with the ex command
 :e. If you want to edit another file within vi, you first need to save your current file (:w),
 then give the command:
:efilename
Suppose you are editing the file practice and want to edit the file
 letter, and then return to
 practice:
	Keystrokes	Results
	:w	 "practice" 6 lines, 328 characters

 Save practice
 with w and press ENTER. practice is saved and remains on
 the screen. You can now switch to another file, because your
 edits are saved.

	:e letter	 "letter" 23 lines, 1344 characters

 Call in the file letter with e and press ENTER. Perform any edits.

vi “remembers” two
 filenames at a time as the current and alternate filenames. These
 can be referred to by the symbols % (current filename) and # (alternate filename). # is particularly useful with :e, since it allows you to switch easily
 back and forth between two files. In the example just given, you
 could return to the first file, practice, by typing the command :e #. You could also read the file
 practice into the current file
 by typing:r #.
If you have not first saved the current file, vi will not allow you to switch files with
 :e or :n unless you tell it imperatively to do
 so by adding an exclamation point after the command.
For example, if after making some edits to letter, you wanted to discard the edits
 and return to practice, you
 could type :e! #.
The following command is also useful. It discards your edits
 and returns to the last saved version of the current file:
:e!
In contrast to the #
 symbol, % is useful mainly when
 writing out the contents of the current buffer to a new file. For
 example, in the earlier section Renaming the Buffer, we showed you how to save a second
 version of the file practice
 with the command:
:w practice.new
Since % stands for the
 current filename, that line could also have been typed:
:w %.new

Switching Files from vi

Since switching back to the previous file is something
 that you will tend to do a lot, you don’t have to move to the
 ex command line to do it. The
 vi command ^^ (the Ctrl key with the caret key) will
 do this for you. Using this command is the same as typing :e #. As with the :e command, if the current buffer has not
 been saved, vi will not let you
 switch back to the previous file.

Edits Between Files

 When you give a yank buffer a one-letter name, you
 have a convenient way to move text from one file to another. Named
 buffers are not cleared when a new file is loaded into the vi buffer with the :e command. Thus, by yanking or deleting
 text from one file (into multiple named buffers if necessary),
 calling in a new file with :e,
 and putting the named buffer(s) into the new file, you can transfer
 material between files.
The following example illustrates how to transfer text from
 one file to another:
	Keystrokes	Results
	"f4yy	 With ascreen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 the results of the edits as you make them
 Yank four lines
 into buffer f.

	:w	 "practice" 6 lines, 238 characters

 Save the file.

	:e letter	 Dear Mr.
 Henshaw:
 I thought that you wouldbe interested to know that:
 Yours truly,
 Enter the file letter with :e. Move the cursor to where the
 copied text will be placed.

	"fp	 Dear Mr.
 Henshaw:
 I thought that you would
 be interested to know that:With a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 the results of the edits as you make them
 Yours truly,
 Place yanked text from named buffer f below the cursor.

 Another way to move text from one file to another is
 to use the ex commands :ya (yank) and :pu (put). These commands work the same
 way as the equivalent vi commands
 y and p, but they are used with ex’s line-addressing capability and named
 buffers.
For example:
:160,224ya a
would yank (copy) lines 160 through 224 into buffer a. Next you would move with :e to the file where you want to put these
 lines. Place the cursor on the line where you want to put the yanked
 lines. Then type:
:pu a
to put the contents of buffer a after the current line.

Using ex Scripts

 Certain ex commands
 you use only within vi, such as
 maps, abbreviations, and so on. If you store these commands in your
 .exrc file, the commands will
 automatically be executed when you invoke vi. Any file that contains commands to
 execute is called a script.
The commands in a typical .exrc script are of no use outside vi. However, you can save other ex commands in a script, and then execute
 the script on a file or on multiple files. Mostly you’ll use
 substitute commands in these external scripts.
For a writer, a useful application of ex scripts is to ensure consistency of
 terminology—or even of spelling—across a document set. For example,
 let’s assume that you’ve run the Unix spell command on two files and that the
 command has printed out the following list of misspellings:
$spell sect1 sect2
chmod
ditroff
myfile
thier
writeable
As is often the case, spell
 has flagged a few technical terms and special cases it doesn’t
 recognize, but it has also identified two genuine spelling
 errors.
Because we checked two files at once, we don’t know which files
 the errors occurred in or where they are in the files. Although there
 are ways to find this out, and the job wouldn’t be too hard for only
 two errors in two files, you can easily imagine how time-consuming the job could grow to be
 for a poor speller or for a typist proofing many files at once.
To make the job easier, you could write an ex script containing the following commands:
%s/thier/their/g
%s/writeable/writable/g
wq
Assume you’ve saved these lines in a file named exscript. The script could be executed from
 within vi with the command:
:so exscript
or the script can be applied to a file right from the command
 line. Then you could edit the files sect1 and sect2 as follows:
$ex -s sect1 < exscript
$ex -s sect2 < exscript
The -s following the invocation of ex is the POSIX way to tell the editor to
 suppress the normal terminal messages.[35]
If the script were longer than the one in our simple example, we
 would already have saved a fair amount of time. However, you might
 wonder if there isn’t some way to avoid repeating the process for each
 file to be edited. Sure enough, we can write a shell script that
 includes—but generalizes—the invocation of ex, so that it can be used on any number of
 files.
Looping in a Shell Script

 You may know that the shell is a programming language
 as well as a command-line interpreter. To invoke ex on a number of files, we use a simple
 type of shell script command called the for loop. A for loop allows you to apply a sequence of
 commands for each argument given to the script. (The for loop is probably the single most
 useful piece of shell programming for beginners. You’ll want to
 remember it even if you don’t write any other shell
 programs.)
Here’s the syntax of a for
 loop:
forvariable in list
do
 command(s)
done
For example:
for file in $*
do
 ex - $file < exscript
done
(The command doesn’t need to be indented; we indented it for
 clarity.) After we create this shell script, we save it in a file
 called correct and make it
 executable with the chmod
 command. (If you aren’t familiar with the chmod command and the procedures for
 adding a command to your Unix search path, see Learning
 the Unix Operating System, published by O’Reilly.) Now
 type:
$correct sect1 sect2
The for loop in correct will assign each argument (each
 file in the list specified by $*,
 which stands for all arguments) to the variable
 file and execute the ex script on the contents of that
 variable.
It may be easier to grasp how the for loop works with an example whose
 output is more visible. Let’s look at a script to rename
 files:
for file in $*
do
 mv $file $file.x
done
Assuming this script is in an executable file called move, here’s what we can do:
$ls
ch01 ch02 ch03 move
$ move ch?? Just the chapter files
$ ls Check the results
ch01.x ch02.x ch03.x move
With creativity, you could rewrite the script to rename the
 files more specifically:
for nn in $*
do
 mv ch$nn sect$nn
done
With the script written this way, you’d specify numbers
 instead of filenames on the command line:
$ls
ch01 ch02 ch03 move
$ move 01 02 03
$ ls
sect01 sect02 sect03 move
The for loop need not take
 $* (all arguments) as the list of
 values to be substituted. You can specify an explicit list as well.
 For example:
forvariable ina b c d
assigns variable to
 a, b,
 c, and d in turn. Or you
 can substitute the output of a command. For example:
forvariable in `grep -l "Alcuin" *`
assigns variable in turn to the name of
 each file in which grep finds the
 string Alcuin. (grep
 -l prints the filenames whose contents match the pattern,
 without printing the actual matching lines.)
If no list is specified:
forvariable
the variable is assigned to each command-line argument in
 turn, much as it was in our initial example. This is actually not
 equivalent to:
forvariable in $*
but to:
forvariable in "$@"
which has a slightly different meaning. The symbol $* expands to $1, $2,
 $3, etc., but the four-character
 sequence "$@" expands to "$1", "$2", "$3", etc. Quotation marks prevent further
 interpretation of special characters.
Let’s return to our main point and our original script:
for file in $*
do
 ex - $file < exscript
done
It may seem a little inelegant to have to use two scripts—the
 shell script and the ex script.
 And in fact, the shell does provide a way to include an editing
 script inside a shell script.

Here Documents

 In a shell script, the operator << means to take the following
 lines, up to a specified string, as input to a command. (This is
 often called a here document.) Using this
 syntax, we could include our editing commands in correct like this:
for file in $*
do
ex - $file << end-of-script
g/thier/s//their/g
g/writeable/s//writable/g
wq
end-of-script
done
The string end-of-script is
 entirely arbitrary—it just needs to be a string that won’t otherwise
 appear in the input and can be used by the shell to recognize when
 the here document is finished. It also must be
 placed at the start of the line. By convention, many users specify
 the end of a here document with the string EOF, or E_O_F, to indicate the end of the
 file.
There are advantages and disadvantages to each approach shown.
 If you want to make a one-time series of edits and don’t mind
 rewriting the script each time, the here document provides an
 effective way to do the job.
However, it’s more flexible to write the editing commands in a
 separate file from the shell script. For example, you could
 establish the convention that you will always put editing commands
 in a file called exscript. Then
 you only need to write the correct script once. You can store it
 away in your personal “tools” directory (which you’ve added to your
 search path) and use it whenever you like.

Sorting Text Blocks: A Sample ex Script

 Suppose you want to alphabetize a file of troff-encoded glossary definitions. Each
 term begins with an .IP macro. In
 addition, each entry is surrounded by the .KS/.KE
 macro pair. (This ensures that the term and its definition will
 print as a block and will not be split across a new page.) The
 glossary file looks something like this:
.KS
.IP "TTY_ARGV" 2n
The command, specified as an argument vector,
that the TTY subwindow executes.
.KE
.KS
.IP "ICON_IMAGE" 2n
Sets or gets the remote image for icon's image.
.KE
.KS
.IP "XV_LABEL" 2n
Specifies a frame's header or an icon's label.
.KE
.KS
.IP "SERVER_SYNC" 2n
Synchronizes with the server once.
Does not set synchronous mode.
.KE
You can alphabetize a file by running the lines through the
 Unix sort command, but you don’t
 really want to sort every line. You want to sort only the glossary
 terms, moving each definition—untouched—along with its corresponding
 term. As it turns out, you can treat each text block as a unit by
 joining the block into one line. Here’s the first version of your
 ex script:
g/^\.KS/,/^\.KE/j
%!sort
Each glossary entry is found between a .KS and .KE macro. j is the ex command to join a line (the equivalent
 in vi is J). So, the first command joins every
 glossary entry into one “line.” The second command then sorts the
 file, producing lines like this:
.KS .IP "ICON_IMAGE" 2n Sets or gets ... image. .KE
.KS .IP "SERVER_SYNC" 2n Synchronizes with ... mode. .KE
.KS .IP "TTY_ARGV" 2n The command, ... executes. .KE
.KS .IP "XV_LABEL" 2n Specifies a ... icon's label. .KE
The lines are now sorted by glossary entry; unfortunately,
 each line also has macros and text mixed in (we’ve used ellipses
 [...] to show omitted text). Somehow, you need to insert newlines to
 “un-join” the lines. You can do this by modifying your ex script: mark the joining points of the
 text blocks before you join them, and then
 replace the markers with newlines. Here’s the expanded ex script:
g/^\.KS/,/^\.KE/-1s/$/@@/
g/^\.KS/,/^\.KE/j
%!sort
%s/@@ /^M/g
The first three commands produce lines like this:

.KS@@ .IP "ICON_IMAGE" 2nn@@ Sets or gets ... image. @@ .KE
.KS@@ .IP "SERVER_SYNC" 2nn@@ Synchronizes with ... mode. @@ .KE
.KS@@ .IP "TTY_ARGV" 2nn@@ The ... vector, @@ that@@ .KE
.KS@@ .IP "XV_LABEL" 2nn@@ Specifies a ... icon's label. @@ .KE
Note the extra space following the @@. The spaces result from the j command, because it converts each
 newline into a space.
The first command marks the original line breaks with @@. You don’t need to mark the end of the
 block (after the .KE), so the
 first command uses a -1 to move
 back up one line at the end of each block. The fourth command
 restores the line breaks by replacing the markers (plus the extra
 space) with newlines. Now your file is sorted by blocks.

Comments in ex Scripts

 You may want to reuse such a script, adapting it to a
 new situation. With a complex script like this, it is wise to add
 comments so that it’s easier for someone else (or even yourself!) to
 reconstruct how it works. In ex
 scripts, anything following a double quote is ignored during
 execution, so a double quote can mark the beginning of a comment.
 Comments can go on their own line. They can also go at the end of
 any command that doesn’t interpret a quote as part of the command.
 (For example, a quote has meaning to map commands and shell escapes,
 so you can’t end such lines with a comment.)
Besides using comments, you can specify a command by its full
 name, something that would ordinarily be too time-consuming from
 within vi. Finally, if you add
 spaces, the ex script shown
 previously becomes this more readable one:
" Mark lines between each KS/KE block
global /^\.KS/,/^\.KE/-1 s /$/@@/
" Now join the blocks into one line
global /^\.KS/,/^\.KE/ join
" Sort each block--now really one line each
%!sort
" Restore the joined lines to original blocks
% s /@@ /^M/g
Surprisingly, the substitute command does not work in
 ex, even though the full names
 for the other commands do.

Beyond ex

 If this discussion has whetted your appetite for even
 more editing power, you should be aware that Unix provides editors
 even more powerful than ex: the
 sed stream editor and the
 awk data manipulation language.
 There is also the extremely popular perl programming language. For information
 on these programs, see the O’Reilly books sed &
 awk, Effective awk Programming,
 Learning Perl, and Programming
 Perl.

[35] Traditionally, ex used a
 single minus sign for this purpose. Typically, for backward
 compatibility, both versions are accepted.

Getting Vim for Windows Environments

There are
 two main options for Microsoft Windows. The first is the
 self-installing executable, gvim.exe, available from the Vim home page.
 Download and run this, and it should do the rest. We have installed
 Vim using this executable on different Windows machines, and it’s
 always worked cleanly. The binary should install correctly on Windows
 XP, 2000, NT, ME, 98, and 95.
Note
At one point in the install process, a DOS window pops up and
 gives a warning about something not being verifiable. We have never
 seen this become a problem.

Another option for Windows users is to install Cygwin (http://www.cygwin.com/), a suite of common GNU tools
 ported to the Windows platform. It’s an amazingly full implementation
 of virtually all mainstream software used on Unix platforms. Vim is
 part of the standard Cygwin installation and can run from a Cygwin
 shell window.
Using Vim with Cygwin
The text-based console Vim works fine in Cygwin, but Cygwin’s
 gvim expects an X Window System
 server to be running and will degrade gracefully into running
 text-based Vim if started without this server.
To get Cygwin’s gvim
 working (assuming you wish to run it on a local screen), start
 Cygwin’s X server from the command line in a Cygwin shell as
 follows:
$X -multiwindow &
The -multiwindow option tells the X server to
 let Windows manage the Cygwin applications. There are many other
 ways to use Cygwin’s X server, but that discussion is outside the
 scope of this book. Installation of Cygwin’s X server is also
 outside the scope; if it is not installed, see the Cygwin home page
 for further information. A graphical “X” icon should appear in the
 Windows systray. This assures that the X server is in fact
 running.
It is confusing to have both Cygwin’s Vim and www.vim.org’s Vim installed at the same
 time. Some of the configuration files referenced for Vim
 configuration may reside in different places, thus resulting in
 seemingly identical versions of Vim that start up with completely
 different options. For instance, Cygwin and Windows may have
 different notions of what is the home directory.

Built-in Help

As mentioned in the previous chapter, Vim comes with more than
 100,000 lines of documentation. Almost all of this is immediately
 available to you from Vim’s built-in help facility. In its simplest
 form, you invoke the :help command. (This is interesting
 because it exposes users to their first example of Vim’s multiple
 window editing.)
While this is nice, it presents a bit of a chicken-and-egg
 conundrum because the built-in help requires a modicum of
 understanding of vi navigation
 techniques; for it to be really effective, users must know how to jump
 back and forth in tags. We’ll give an overview of help screen
 navigation here.
The :help command brings up something similar
 to:
help.txt For Vim version 7.0. Last change: 2006 May 07

 VIM - main help file
 k
 Move around: Use the cursor keys, or "h" to go left, h l
 "j" to go down, "k" to go up, "l" to go right. j
Close this window: Use ":q[Enter]".
 Get out of Vim: Use ":qa![Enter]" (careful, all changes are lost!).

Jump to a subject: Position the cursor on a tag (e.g. |bars|) and hit CTRL-].
 With the mouse: ":set mouse=a" to enable the mouse (in xterm or GUI).
 Double-click the left mouse button on a tag, e.g. |bars|.
 Jump back: Type CTRL-T or CTRL-O (repeat to go further back).

Get specific help: It is possible to go directly to whatever you want help
 on, by giving an argument to the |:help| command.
 It is possible to further specify the context:
 help-context
 WHAT PREPEND EXAMPLE ~
 Normal mode command (nothing) :help x
Thankfully, Vim accommodates the potential navigation problem
 for beginners and considerately opens with basic guidelines for
 navigation, and even tells you how to exit the help screen. We
 recommend this as a starting point and urge you to spend time
 exploring the help.
Once you are familiar with help, you can branch out by using tab
 completion in Vim’s command line. For any command at the command
 prompt (:), pressing the Tab key
 results in context-sensitive command-line completion. For example, the
 following:
:e /etc/termc[TAB]
on any Unix system would expand to:
:e /etc/termcap
The :e command implies that the
 command argument is a file, so command completion looks for files that
 match the partial filename to complete the input.
But :help has its own
 context, covering the help topics. The partial topic string you type
 is matched by a substring in any available Vim help topic. We strongly
 encourage you to learn and use this feature. It saves time and reveals
 new and interesting features you probably didn’t know about.
For example, suppose you want to know how to split a screen.
 Start with:
:help split
and press the Tab key. In the current session, the help command
 cycles through: split(); :split; :split_f; splitview; splitfind; 'splitright'; 'splitbelow'; g:netrw_browse_split; :dsplit; :vsplit; :isplit; :diffsplit; +vertsplit; and more. To see help for any
 topic, press the ENTER key when that
 topic is highlighted. You’ll not only see what you’re probably looking
 for (:split), but you will also discover things you
 didn’t realize you could do, such as :vsplit, the
 “vertical split” command.

Startup and Initialization Options

Vim uses different mechanisms to set up its environment at
 startup. It inspects command-line options. It self-inspects (how was it invoked, and by what
 name?). There are different compiled binaries to serve different needs
 (GUI versus text window). Vim also uses a sequence of initialization
 files in which uncountable combinations of behaviors can be defined
 and modified. There are too many options to cover completely; we will
 touch on some of the interesting ones. In the next sections, we
 discuss Vim’s starting sequence along the following lines:
	Command-line options

	Behaviors associated to command name

	Configuration files (system-wide and per-user)

	Environment variables

This section introduces you to some of the
 ways to start Vim. For a more detailed discussion of many more
 options, use the help command:
:help startup
Command-Line Options

Vim’s command-line options provide flexibility and power. Some
 options invoke extra features, whereas others override and suppress
 default behavior. We will discuss the command-line syntax as it
 would be used in a typical Unix environment. Single-letter options begin with
 - (one hyphen), as in
 -b, which allows editing of binary files.
 Word-length options begin with --
 (two hyphens), as in --noplugin,
 which overrides the default behavior of loading plugins. A
 command-line argument of two hyphens by themselves tells Vim that
 the rest of the command line contains no options (this is a standard
 Unix behavior).
Following the command-line options, you can optionally list
 one or more filenames to be edited. (Actually, there is an
 interesting case where a filename can be a single “-”, telling Vim
 that input comes from the standard input,
 stdin. This will be covered later, but you are
 encouraged to look at uses for this on your own.)
The following is a partial list of Vim command-line options
 not available in vi (all vi options are available in Vim):
	-b
	Edit in binary mode. This is self-explanatory and very
 cool. Editing binary files is an acquired taste, but this is a
 powerful way to edit files not touchable by most other tools.
 Users should read Vim’s help section on editing binary
 files.

	-c
 command
	command will be executed as an
 ex command. vi has this same option, but Vim
 allows up to 10 -c
 instances in one command.

	-C
	Run Vim in compatible (vi) mode. For obvious reasons, this
 option would never be in vi.

	-cmd
 command
	command executes before vimrc files. This is the long form
 of the -c option.

	-d
	Start in diff mode. Vim performs a diff on two, three,
 or four files and sets options making inspection of files
 differences simple (scrollbind, foldcolumn, etc.).
Vim uses the OS-available diff command, which is
 diff on Unix systems. The
 Windows version offers a downloadable executable with which
 Vim can perform the diff.

	-E
	Start in improved ex
 mode. For example, improved ex mode would use extended regular
 expressions.

	-F or -A
	Farsi or Arabic modes, respectively. These require key
 and character maps to be useful and draw the screen from right
 to left.

	-g
	Start gvim
 (GUI).

	-m
	Turn off the write option. Buffers will not be
 modifiable.

	-o
	Open all files in a separate window. Optionally an
 integer can specify the number of windows to open. Files named
 on the command line fill that number of windows only (the rest
 are in Vim buffers). If the specified number of windows
 exceeds the listed files, Vim opens empty windows to satisfy
 the request count of windows.

	-O
	Like -o, but opens
 vertically split windows.

	-y
	Run Vim in easy mode. This sets options to a more
 intuitive behavior for beginners. While “easy” may help the
 uninitiated, seasoned users will find this mode confusing and
 irritating.

	-z
	Run in restricted mode. This basically turns off all
 external interfaces and prevents access to the system
 features. For example, users can’t use !G!sort to sort from the current
 line in the buffer to end-of-file; the filter sort will not be available.

The following is a series of related options to use a remote
 instance of a server Vim. remote commands tell a remote
 Vim (which may or may not be executing on the same machine) to edit
 a file or evaluate an expression in that remote server. The server
 commands tell Vim which server to send to or can declare itself as a
 server. serverlist simply lists available
 servers:
	-remote
 file
	-remote-silent
 file
	-remote-wait
 file
	-remote-send
 file
	-servername
 name
	-remote-expr
 expr
	-remote-wait-silent
 file
	-remote-tab
	-remote-send
 keys
	-remote-wait-silent
 file
	-serverlist

For a more complete discussion of all command-line options,
 including the complete vi set,
 refer to the section Command-Line Syntax.

Behaviors Associated to Command Name

Vim comes in two main flavors, graphical (using the X Window
 System under Unix variants and native GUIs in other operating
 systems) and text, each of which can start up with subsets of
 characteristics. Unix users simply use one of the commands in the
 following list to get the desired behavior:
	vim
	Start the text-based Vim.

	gvim
	Start Vim in graphical mode. In many environments,
 gvim is a different binary
 file of Vim with all of the GUI options turned on during
 compilation. Same as vim -g. (In Unix environments,
 gvim requires the X Window
 System.)

	view, gview
	Start Vim or gvim in
 read-only mode. Same as vim
 -R.

	rvim
	Start Vim in restrictive mode. All external access to
 shell commands is disabled, as well as the ability to suspend
 the edit session with the ^Z command.

	rgvim
	Same as rvim but for
 the graphical version.

	rview
	Analogous to view,
 but start in restricted mode. In restricted mode, users do not
 have access to filters, outside enviroments, or OS features.
 Same as vim -Z (the
 -R option invokes just the read-only effect
 described previously).

	rgview
	Same as rview but for
 the graphical version.

	evim, eview
	Use “easy” mode for editing or read-only viewing. Vim
 sets options and features so it behaves in a more intuitive
 way for those who are not familiar with the Vim paradigm. Same
 as vim -y. Expert users
 probably won’t find this mode easy because they’re already
 used to standard vi
 behavior.
Note there is no analogous gXXX
 version of these commands, because gvim is ostensibly thought to be
 already easy, or at least intuitive to learn, with predictable
 point-and-click behavior.

	vimdiff, gvimdiff
	Start in “diff” mode and perform a diff on the input
 files. This is covered in depth later in the section What’s the Difference?.

	ex, gex
	Use the old line-editing ex mode. Useful in scripts. Same as
 vim -e.

Windows users can access a similar choice of Vim versions in
 the program list (Start menu).

System and User Configuration Files

Vim looks for initialization cues in a special sequence. It
 executes the first set of instructions it finds (either in the form
 of an environment variable or in a file) and begins editing. So, the
 first element of the following list that is encountered is the only
 element of the list that is executed. The sequence follows:
	VIMINIT. This is an
 environment variable. If it is nonempty, Vim executes its
 content as an ex
 command.

	User vimrc files. The
 vimrc (Vim resource)
 initialization file is a cross-platform concept, but because of
 subtle operating system and platform differences, Vim looks for
 it in different places in the following order:
	$HOME/.vimrc
 (Unix, OS/2, and Mac OS X)
	s:.vimrc
 (Amiga)
	home:.vimrc
 (Amiga)
	$VIM/.vimrc (OS/2
 and Amiga)
	$HOME/_vimrc (DOS
 and Windows)
	$VIM/_vimrc (DOS
 and Windows)

	exrc option. If the Vim
 exrc option is set, Vim looks
 for the three additional config files: [._]vimrc; [._]vimrc; and [._]exrc.

The vimrc file is a good
 place to configure Vim’s editing characteristics. Virtually any Vim
 option can be set or unset in this file, and it is particularly
 suited to setting up global variables and defining functions, abbreviations, key mappings, etc. Here are a few
 things to know about the vimrc
 file:
	Comments begin with a double quote ("), and the double quote can be
 anywhere in the line. All text after and including the double
 quote is ignored.

	ex commands can be
 specified with or without a colon. For example, set autoindent is
 identical to :set
 autoindent.

	The file is much more manageable if you break large sets
 of option definitions into separate lines. For example:
set terse sw=1 ai ic wm=15 sm nows ruler wc=<Tab> more
is
 equivalent to:
set terse " short error and info messages
set shiftwidth=1
set autoindent
set ignorecase
set wrapmargin=15
set nowrapscan " don't scan past end or top of file in searches
set ruler
set wildchar=<TAB>
set more
Notice how much more readable the second set of commands is.
 The second method is also much easier to maintain through
 deletions, insertions, and temporarily commenting out lines when debugging settings in the
 configuration file. For example, should you want to
 temporarily disable line numbering in the startup
 configuration, you simply insert the double quote (") at the beginning of the set number line in your
 configuration file.

Environment Variables

Many environment variables affect Vim’s startup behavior and even some edit-session behavior. These are mostly transparent
 and handled with defaults if not configured.
How to set environment variables

The command environment you have when you log in (called the
 shell in Unix) sets variables to reflect or
 control its behavior. Environment variables are especially
 powerful because they affect programs invoked within the command
 environment. The following instructions are not specific to Vim;
 they can be used to set any environment variables you want set in
 the command environment.
	Windows
	To set an environment variable:
	Bring up the control panel.

	Double-click System.

	Click the Advanced tab.

	Click the Environment Variables button.

The result is a window divided into two environment
 variable areas, User and System. Novices shouldn’t modify
 the System environment variables. In the User area, you can
 set environment variables related to Vim and make them
 persist across login sessions.

	Unix/Linux Bash and other Bourne shells
	Edit the appropriate shell configuration file (such as
 .bashrc for Bash users)
 and insert lines resembling:
VARABC=somevalueVARXYZ=someothervalueMYVIMRC=myfavoritevimrcfile
exportVARABCVARXYZMYVIMRC
The order of these lines is irrelevant. The export statement just makes
 variables visible to programs that run in the shell, and
 thus turns them into environment variables. The value of
 exported variables can be set before or after exporting
 them.

	Unix/Linux C shells
	Edit the appropriate shell configuration file (such as
 .cshrc) and insert
 lines resembling the
 following:
setenvVARABC somevalue
setenv VARXYZ someothervalue
setenvMYVIMRCmyfavoritevimrcfile

Environment variables relevant to Vim

The following list shows most of Vim’s environment variables and their effects.
The Vim -u command-line option overrides
 Vim’s environment variables and goes directly to the specified
 initialization file. The -u does
 not override non-Vim environment
 variables:
	SHELL
	Specifies which shell or external command interpreter
 Vim uses for shell commands (!!, :!, etc.). In MS-DOS, if SHELL is not set, the COMSPEC environment variable is used
 instead.

	TERM
	Sets Vim’s internal term option. This is somewhat
 unnecessary, because the editor sets its terminal itself as
 it deems appropriate. In other words, Vim probably knows
 what the terminal is better than a predefined
 variable.

	MYVIMRC
	Overrides Vim’s search for initialization files. If
 MYVIMRC has a value when
 starting, Vim assumes the value is the name of an
 initialization file and, if the file exists, takes initial
 settings from it. No other file is consulted (see the search sequence in the previous section).

	VIMINIT
	Specifies ex
 commands to execute when Vim starts. Define multiple
 commands by separating them with vertical bars (|).

	EXINIT
	Same as VIMINIT.

	VIM
	Contains the path of a system directory where standard
 Vim installation information is found (for information only
 and not used by Vim).
Note
If more than one version of Vim exists on a
 machine, VIM will
 likely reflect different values depending upon which
 version the user started. For example, on one author’s
 machine, the Cygwin version sets the VIM environment
 variable to /usr/share/vim, whereas the
 vim.org package sets
 it to C:\Program
 Files\Vim.
This is important to know if you are making
 changes to Vim files, as changes may not take effect if
 you edit the wrong files!

	VIMRUNTIME
	Points to Vim support files, such as online documentation, syntax definitions, and plug-in directories.
 Vim typically figures this out on its own. If the user sets
 the variable—for example, in the vimrc file—it can cause errors if
 a newer version of Vim is installed because the user’s
 personal VIMRUNTIME
 variable may point to an old, nonexistent, or invalid
 location.

New Motion Commands

Vim provides all vi movement
 or motion commands, most of which are listed in Chapter 3, and adds several others, summarized in Table 10-1.
Table 10-1. Motion commands in Vim
	Command	Description
	<C-End>	Go to the end of the file, i.e., the last character of
 the last line of the file. If a count is
 given, go to the last character of the line
 count.
	<C-Home>	Go to the first nonwhitespace character of the first
 line of the file. This differs from <C-End> because <C-Home> does not move the
 cursor to whitespace.
	count %	Go to the line count percent
 into the file, putting the cursor on the first nonblank line.
 It’s important to note that Vim bases its calculation on the
 number of lines in the file, not the total character count.
 This may not seem important, but consider an example of a file
 containing 200 lines, of which the first 195 contain 5
 characters (for example, prices such as $4.98), and the last four lines
 contain 1,000 characters. In Unix, accounting for the newline
 character, the file would contain approximately:

 (195 * (5 + 1)) (The number of characters in
 the first 5-character lines)
 + 2 + (4
 * (1000 + 1)) (The number of characters in the
 1,000-character lines)
 or 5,200
 characters. A true 50% count would place the cursor on line
 96, and Vim’s 50% motion command would place the cursor on
 line 100.

	 :go n

 n go
	Go to the nth
 byte in the buffer. All characters, including end-of-line
 characters, are counted.

Visual Mode Motion

Vim lets users define selections visually and perform editing
 commands on the visual selection. This is similar to what many users
 see in graphical editors where they highlight areas by clicking and
 dragging the mouse. What Vim offers with its visual mode is the
 convenience of seeing the selection on which work is done
 and all of the powerful Vim commands with which
 to do work on the visually selected text. This lets you do much more
 sophisticated work on highlighted text than the traditional cut and
 paste actions in less sophisticated editors.
You can select a visual area in Vim in the same manner as
 other editors, by clicking and dragging the mouse. But Vim also lets
 you use its powerful motion commands and some special visual mode
 commands to define the visual selection.
For example, you can type v
 in normal mode to start visual mode. Once you are in visual mode,
 any motion commands move the cursor and
 highlight text as the cursor moves to a new position. So, the “next
 word” command (w) in visual mode
 moves the cursor to the next word and highlights the selected text.
 Additional movements extend the selected region
 appropriately.
In visual mode, Vim uses some specialized commands with which
 you conveniently extend the selected text by selecting the text
 object around the cursor. For example, the cursor can be within a
 “word,” and at the same time be within a “sentence,” and also be
 within a “paragraph.” Vim lets you add to the visual selection with
 commands that extend the highlighted region to a text object. To
 visually select a word, you can use aw (when in visual mode).
Vim uses the following motion commands by taking advantage of
 “visual mode,” which highlights lines and characters in the buffer
 in order to provide visual cues about what text will be targeted by
 subsequent Vim actions. You can highlight visual areas of the buffer
 in several ways. In text-based mode, simply type v to toggle visual mode on and off. When
 on, visual mode selects and highlights the buffer as the cursor
 moves. In gvim, just click and
 drag the mouse across the desired region. This sets Vim’s visual
 flag.
Table 10-2 shows some of Vim’s visual
 mode motion commands.
Table 10-2. Visual mode motion commands in Vim
	Command	Description
	countaw,
 countaW	Select count words.
 Intervening whitespace is included. This is slightly
 different from iw (see
 next entry). Lowercase w
 looks for punctuation-delimited words, whereas uppercase
 W looks for
 whitespace-delimited words.
	countiw,
 countiW	Select count words. Add
 words but not whitespace. Lowercase w looks for punctuation-delimited
 words, whereas uppercase W looks for whitespace-delimited
 words.
	as, is	Add sentence, or inner sentence.
	ap, ip	Add paragraph, or inner paragraph.

For a more detailed discussion of text objects and how they
 are used in visual mode, use the help command:
:help text-objects

Customizing the Executable

For most users, the default Vim suffices nicely. Today’s
 computers provide enough processing power (memory and processing
 cycles) for the full-featured Vim executable. You get all of Vim’s
 extended features with the confidence of good performance. However, in
 some instances, environment or circumstance may dictate a more
 stripped down Vim.
Users may need Vim to take up a minimal footprint, for example,
 on a handheld device running Linux that has limited memory. Users may
 also have no use for compiled-in features such as spellcheck (because
 they may be programmers with no interest in features that mimic word
 processing) or perl (because
 perl may not be installed on their
 machines).
It’s much easier to live with the available features than to
 reconfigure, recompile, and reinstall Vim with all new options, just
 to add missing features.

Moving Around Windows (Getting Your Cursor from Here to
 There)

It’s easy to move from window to window with a mouse in
 both gvim and Vim.
 gvim supports clicking with the
 mouse by default, whereas in Vim you can enable the behavior with the mouse option. A good default setting for Vim
 is :set mouse=a, to activate the
 mouse for all uses: command line, input, and navigation.
If you don’t have a mouse, or prefer to control your session
 from the keyboard, Vim provides a full set of navigation commands to
 move quickly and accurately among session windows. Happily, Vim uses
 the mnemonic prefix keystroke ^W
 consistently for window navigation. The keystroke that follows defines the
 motion or other action, and should be familiar to experienced vi and Vim users because they map closely to
 the same motion commands for editing.
Rather than describe each command and its behavior, we will
 consider an example. The command-synopsis table should then be
 self-explanatory.
To move from the current Vim window to the next one, type
 CTRL-W j (or CTRL-W
 <down> or CTRL-W CTRL-J). The CTRL-W is the mnemonic for “window” command, and the
 j is analogous to Vim’s j command, which
 moves the cursor to the next line.
Table 11-2
 summarizes the window navigation commands.
Note
As with many Vim and vi
 commands, these can be multiply executed by prefixing them with a
 count. For example, 3^Wj tells Vim to jump to the third
 window down from the current window.

Table 11-2: Window navigation commands
[image:]

Mnemonic Tips
t and b are mnemonic for
 top and bottom
 windows.
In keeping with the convention that lowercase and uppercase
 implement opposites, CTRL-W w moves you through the windows in the
 opposite direction from CTRL-W
 W.
The Control characters do not distinguish between uppercase
 and lowercase; in other words, pressing the Shift key while pressing
 a CTRL- key itself has no effect.
 However, an upper/lowercase distinction is
 recognized for the regular keyboard key you press afterward.

Resizing Windows

Now that you’re more familiar with Vim’s multiwindowing
 features, you need a little more control over them. This section
 addresses how you can change the size of the current window, with, of
 course, effects on other windows in the screen. Vim provides options
 to control window sizes and window sizing behavior when opening new
 windows with split commands.
If you’d rather control window sizes sans
 commands, use gvim and let the mouse do the work for you. Simply click and
 drag window boundaries with the mouse to resize. For vertically
 separated windows, click the mouse on the vertical separator of
 | characters. Horizontal windows
 are separated by their status lines.
Window Resize Commands

As you’d expect, Vim has vertical and horizontal resize commands. Like the
 other window commands, these all begin with CTRL-W and map nicely to mnemonic devices,
 making them easy to learn and remember.
CTRL-W= tries to resize all windows to equal
 size. (This is also influenced by the current values of winheight and windwidth, discussed in the following
 section.) If the available screen real estate doesn’t divide
 equally, Vim sizes the windows to be as close to equal as
 possible.
CTRL-W- decreases the current window height by
 one line. Vim also has an ex
 command that lets you decrease the window size explicitly. For
 example, the command resize -4
 decreases the current window by four lines and gives those lines to
 the window below it.
Note
It’s interesting to note that Vim obediently decreases your
 window size even if you are not in a multiple window edit session.
 While it may seem counterintuitive at first, the side effect is
 that Vim decreases the window as requested and the vacated screen
 real estate is allocated to the command-line window. Typically, the
 command-line window always
 uses a single line, but there are reasons to use a command-line
 window larger than one line high. (The most common reason we know
 of is to provide enough space to let Vim display complete
 command-line status and feedback without intermediate prompts.)
 That said, it’s best to use the :resize command to resize your current
 window, and to use the winheight option to size your
 command window.

CTRL-W+ increases the current window by one
 line. The :resize
 +n command increases the
 current window size by n lines. Once the
 window’s maximum height is reached, further use of this command has
 no effect.
Tip
One of the authors’ favorite ways to use the CTRL-W +
 and CTRL-W - commands is by mapping each to keys,
 both keys adjacent. The + key is
 a convenient choice. Though it is already the Vim “up” command,
 that behavior is redundant and little used by veteran Vim users
 (who use the k command instead).
 Therefore, this key is a good candidate to map to something else,
 in this case CTRL-W +. Immediately to that key’s left (on
 most standard keyboards) is the -. But since it is unshifted and the
 + is shifted, map the shifted
 key, _, to CTRL-W -. Now you have two convenient
 side-by-side keys to easily and quickly expand and contract your
 current window horizontally.

:resizen sets
 the horizontal size of the current window to n
 lines. It sets an absolute size, in contrast to the previously
 described commands that make a relative change.
zn sets the
 current window height to n lines. Note that
 n is not optional!
 Omitting it results in the vi/Vim
 command z, which moves the cursor
 to the top of the screen.
CTRL-W< and CTRL-W>
 decrease and increase the window width, respectively. Think of the
 mnemonic device of “shift left” (<<) and “shift right” (>>) to associate these commands to
 their function.
Finally, CTRL-W | resizes the current window to the widest
 size possible (by default). You can also specify explicitly how to
 change the window width with vertical
 resize n. The
 n defines the window’s new width.

Window Sizing Options

Several Vim options influence the behavior of the resize
 commands described in the previous section.
winheight and winwidth define the minimal window height and width, respectively,
 when a window becomes active. For example, if the screen
 accommodates two equal-sized windows of 45 lines, the default Vim
 behavior is to split them equally. If you were to set winheight to a value larger than 45—say,
 60—Vim will resize the window to which you move each time to 60
 lines, and will resize the other window to 30. This is handy for
 editing two files simultaneously; you automatically increase the
 allocated window size for maximum context when you switch from
 window to window and from file to file.
equalalways tells Vim to
 always resize windows equally after splitting or closing a window.
 This is a good option to set in order to ensure equitable allocation
 of windows as you add and delete them.
eadirection
 defines directional jurisdiction for equalalways. The possible values
 hor, ver, and both tell Vim
 to make windows of equal size horizontally,
 vertically, or both,
 respectively. The resizing applies each time you split or delete a
 window.
cmdheight sets the command
 line height. As described previously, decreasing a window’s height when there is only one window
 increases the command-line height. You can keep the command line the
 height you want using this option.
Finally, winminwidth and
 winminheight tell Vim the
 minimum width and height to size windows. Vim
 considers these to be hard values, meaning that windows will never
 be allowed to get smaller than these values.

Resizing Command Synopsis

Table 11-5 summarizes the
 ways to resize windows. Options are set with the :set command.
Table 11-5. Window resizing commands
	Command or option	Description
	^W=	Resize all windows equally. The current window honors
 the settings of the winheight and winwidth options.

	:resize -n

 ^W-	Decrease the current window size. The default amount is one
 line.

	:resize +n

 ^W+

	Increase the current window size. The default
 amount is one line.

	:resizen

 ^W^_

 ^W_

	Set the current window height. The default is
 to maximize window height (unless n
 is specified).

	zn
 <ENTER>	Set the current window height to
 n.

	^W<	Increase the current window width. The default amount
 is one column.

	^W>	Decrease the current window width. The default amount is
 one column.

	:vertical resizen

 ^W|

	Set the current window width to n. The
 default is to make window as wide as possible.

	winheight
 option	When entering or creating a window, set its
 height to at least the specified value.

	winwidth
 option	When entering or creating a window, set its
 width to at least the specified value.

	equalalways
 option	When the number of windows changes, either by
 splitting or closing windows, resize them to be the same
 size.

	eadirection
 option	Define whether Vim resizes windows equally
 vertically, horizontally, or both.

	cmdheight
 option	Set the command line height.

	winminheight
 option	Define the minimum window height, which applies to
 all windows created.

	winminwidth
 option	Define the minimum window width, which applies to
 all windows created.

Playing Tag with Windows

Vim
 extends the vi tag functionality
 into windows by offering the same tag traversal mechanisms through
 multiple windows. Following a tag can also open a file in the
 associated place in a new window.
The tag windowing commands split the current window and follow a tag either to a
 file matching the tag or to the file matching the filename under the
 cursor.
:stag[!]tag
 splits the window to display the location for the tag found.
 The new file containing the matched tag becomes the current window,
 and the cursor is placed over the matched tag. If no tag is found, the
 command fails and no new window is created.
Tip
As you become more familiar with Vim’s help system, you can
 use this :stag command to split
 your way through the help system rather than jumping from file to
 file in the same window.

^WJ or ^W^J splits the window and opens a window above the current window.
 The new window becomes the current window, and the cursor is placed on
 the matching tag. If there is no match on the tag, the command
 fails.
^Wg] splits the window and creates a new window above the current
 window. In the new window, Vim performs the command :tselecttag,
 where tag was the tag identifier under the
 cursor. If no matching tag exists, the command fails. The cursor is
 placed in the new window, and that new window becomes the current
 window.
^Wg^J works exactly like
 ^Wg], except that instead of performing :tselect, it performs :tjump.
^Wf (or ^W^F) splits the window and edits the filename underneath the cursor.
 Vim will look sequentially through the files set in the option
 variable path to find the file. If
 the file doesn’t exist in any of the path directories, the command fails and does
 not create a new window.
^WF splits the window and
 edits the filename under the cursor. The cursor is placed in the new
 window editing that file and positioned at the line number matching
 the number following the filename in the first window.
^Wgf opens the file under the
 cursor in a new tab. If the file doesn’t exist, the new tab is not
 created.
^Wgf opens the file under the
 cursor in a new tab and positions the cursor on the line specified by
 the number following the filename in the first window. If the file
 doesn’t exist, the new tab is not created.

Chapter 12. Vim Scripts

Sometimes customization alone isn’t enough for your editing
 environment. Vim lets you define all of your favorite settings in your
 .vimrc file, but maybe you want
 more dynamic or “just in time” configuration. Vim scripts let you do
 that.
From inspecting buffer contents to handling unanticipated external
 factors, Vim’s scripting language lets you complete complex tasks and
 make decisions based on your needs.
If you have a Vim configuration file (.vimrc, .gvimrc, or both), you are already scripting
 in Vim; you just don’t know it. All of the Vim commands and options are
 valid inputs to scripts. And, as you’d expect, Vim provides all of the
 standard flow control (if...then...else, while, etc.), variables, and functions typical
 in any language.
In this chapter, we’ll walk through an example and incrementally
 build up a script. We’ll look at simple constructs, use some of Vim’s
 built-in functions, and examine rules you must consider in order to
 write well-behaved and predictable Vim scripts.
Customizing Scrollbars, Menus, and Toolbars

gvim provides the usual GUI
 widgets, such as scrollbars, menus, and toolbars. Like most modern GUI
 applications, these widgets are customizable.
The gvim window, by default,
 shows several menus and a toolbar at the top, as illustrated by Figure 13-5.
[image: Top of gvim window]

Figure 13-5. Top of gvim window

Scrollbars

Scrollbars, which let you navigate up and down or right and left
 quickly through a file, are optional in gvim. You can display or hide them with
 the guioptions option,
 described at the end of this chapter in GUI Options and Command Synopsis.
Because Vim’s standard behavior is to show all text in the
 file (wrapping lines in the window if necessary), it’s interesting
 to note that the horizontal scrollbar serves no purpose in typically
 configured gvim sessions.
Turn the left and right scrollbars on and off by including or
 excluding r or l in the guioptions option. l makes
 sure the screen always has a left scrollbar, whereas r
 makes it always have a right scrollbar. The uppercase variants
 L and R tell gvim to show left or right scrollbars only
 when there is a vertically split window.
The horizontal scrollbar is controlled by including or
 excluding b in the guioptions option.
And yes, you can scroll the right and
 left scrollbars at the same time! More precisely, scrolling either
 one causes the other to move in the corresponding direction. It can
 be pretty convenient to have scrollbars configured on both sides.
 Depending upon where your mouse is positioned, you simply click and
 drag the nearest scrollbar.
Note
Many options, including guioptions, control many behaviors, and
 thus can include many flags by default. New flags could even be
 added in future versions of gvim. Hence, it is important to use the
 += and -= syntax in
 the :set guioptions command, to
 avoid deleting desirable behaviors. For example, :set guioptions+=l adds the “scrollbar
 always on left” option to gvim,
 leaving the other components in the guioptions string intact.

Menus

gvim has a fully customizable menu feature. In this section we
 describe the default menu characteristics, which appeared earlier in
 Figure 13-5, and show how you can control the
 menu layout.
Figure 13-6 shows one example of using
 a menu. In this case we’re choosing Global Settings from the Edit
 menu.
[image: Cascading Edit menu]

Figure 13-6. Cascading Edit menu

It’s interesting to note these menu options are merely
 wrappers for Vim commands. In fact, that is exactly how you can
 create and customize your own menu entries, which we discuss
 shortly.
Tip
Notice that if you pay attention to the menus, including the
 keystrokes or commands shown on the right side, you can learn Vim
 commands over time. For example, in Figure 13-6, although it’s handy for beginners to
 find the familiar Undo command in the Edit menu, where it appears
 in other popular applications, it is much
 faster and easier to use the Vim u keystroke, which
 is shown in the menu.

As shown in Figure 13-6, each menu
 starts with a dashed line containing a picture of scissors. Clicking
 this line “tears off” the menu to create a free-standing window in
 which that submenu’s options are available without going to the menu
 bar. If you clicked the dashed line above the Toggle Pattern
 Highlight menu in Figure 13-6, you would see
 something like Figure 13-7. You can position
 the free-floating menu anywhere on your desktop.
[image: Tearing off a menu]

Figure 13-7. Tearing off a menu

Now, all of the commands on this submenu are immediately
 available with just one click in the submenu’s window. Each menu
 selection is mapped to a button. If a menu selection itself is a
 submenu, it is represented by a button with greater-than signs
 (which look like rightward-pointing arrows) at the right side of the
 button. Clicking these arrows expands the submenu.
Basic menu customization

gvim stores menu
 definitions in a file named
 $VIMRUNTIME/menu.vim.
Defining menu items is similar to mapping. As you saw in the
 section Using the map Command, you can map a key
 like this:
:map <F12> :set syntax=html<CR>

 Menus are handled very similarly.
Suppose that, rather than map F12 to set the syntax to
 html, we want a special “HTML”
 entry on our File menu to do this task. Use the :amenu command:
:amenu File.HTML :set syntax=html<CR>

 The four characters <CR>
 are to be typed as shown, and are part of the command.
Now look at your file menu. You should see a new HTML entry,
 as shown in Figure 13-8. By using amenu
 instead of menu, we ensure that the entry is available in all modes
 (command, insert, and normal).
[image: HTML menu item under File menu]

Figure 13-8. HTML menu item under File menu

Note
The menu command adds the entry to the
 menu only in command mode; the entry does not appear in insert
 and normal modes.

The location for a menu entry is specified by a series of
 cascading menu entries separated by periods (.). In
 our example, File.HTML added
 the menu entry “HTML” to the File menu. The last entry in the
 series is the one you want to add. Here we’ve added it to an
 existing menu, but we’ll soon see that we can just as easily
 create a whole cascading series of new menus.
Be sure to test your new menu selection. For example, we
 started editing a file that Vim treats as an XML file, as can be
 seen in the status line in Figure 13-9.
 We’ve customized the status line so that Vim and gvim display the currently active syntax
 on the far right. (See A Nice Vim Piggybacking Trick.)
[image: Status line showing XML syntax before new menu action]

Figure 13-9. Status line showing XML syntax before new menu
 action

After invoking our new HTML menu item, the Vim status line
 verifies that the menu item worked and that the syntax is now
 HTML. See Figure 13-10.
[image: Status line showing HTML syntax after new menu action]

Figure 13-10. Status line showing HTML syntax after new menu
 action

Notice that the HTML menu item we added doesn’t have a
 shortcut or command on the righthand side. So let’s redo the menu
 addition and include this nice enhancement.
First, delete the existing entry:
:aunmenu File.HTML
Note
If you add a menu entry for command mode only using the
 menu command, you can remove
 it using unmenu.

Next, add a new HTML menu item that displays the command you
 associated to the item:
:amenu File.HTML<TAB>syntax=html<CR> :set syntax=html<CR>
The specification of the menu entry is now followed
 by <TAB>
 (typed literally) and syntax=html<CR>. In general, to
 display text on the righthand side of the menu, place it after the
 string <TAB> and
 terminate it with <CR>.
 Figure 13-11 shows the resulting File
 menu.
[image: HTML menu item, displaying associated command]

Figure 13-11. HTML menu item, displaying associated command

Note
If you want spaces in the descriptive text of the menu
 item (or in the menu name itself), quote the spaces with
 backslashes (\). If you don’t, Vim uses everything
 after the first space character for the definition of the menu
 action. In the previous example, if we wanted :set syntax=html instead of just
 syntax=html for the
 descriptive text, the :amenu
 command would have to be:
:amenu File.HTML<TAB>set\ syntax=html<CR> :set syntax=html<CR>

In most cases, it’s probably best not to modify the default
 menu definitions, but instead to create separate and independent
 entries. This requires defining a new menu at the root level, but
 this is just as simple as adding an entry to an existing
 menu.
Continuing our example, let’s create a new menu tree called
 MyMenu on the menu bar, and
 then add an HTML menu item to it. First, remove the HTML item from
 the File menu:
:aunmenu File.HTML
Next, enter the command:
:amenu MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>
Figure 13-12 shows how your menu bar
 may appear.
[image: Menu bar with “MyMenu” menu added]

Figure 13-12. Menu bar with “MyMenu” menu added

The menu commands offer more subtle control over where the
 menus appear and their behavior, such as whether the command
 indicates any activity, or even whether the menu item is visible.
 We discuss these possibilities further in the following
 section.

More menu customization

Now that we see how easy it is to modify and extend gvim’s menus, let’s look at more
 examples of customization and control.
Our previous example didn’t specify where to put the new
 MyMenu menu, and gvim
 arbitrarily placed it on the menu bar between Window and Help.
 gvim lets us control the
 position with its notion of priority, which
 is simply a numerical value assigned to each menu to determine
 where it goes on the menu bar. The higher this value is, the
 further to the right the menu appears. Unfortunately, the way
 users think of priority is the opposite of how it’s defined by
 gvim. To get priority straight,
 look back at the order of menus in Figure 13-5 and compare it to gvim’s default menu priorities, as
 listed in Table 13-1.
Table 13-1. gvim’s default menu priorities
	Menu	Priority
	File	10
	Edit	20
	Tools	40
	Syntax	50
	Buffers	60
	Window	70
	Help	9999

Most users would consider File a higher priority than Help
 (which is why File is on the left and Help on the right), but the
 priority of Help is higher. So, just think of the priority value
 as an indication of how far to the right a menu appears.
You can define a menu’s priority by prepending its numeric
 value to the menu command. If no value is specified, a default
 value of 500 is assigned, which explains why MyMenu ended up where
 it did in our earlier example: it landed between Window (priority
 70) and Help (priority 9999).
Assume we want our new menu to be between the File and Edit
 menus. We need to assign MyMenu a numeric priority greater than 10
 and less than 20. The following command assigns a priority of 15,
 leading to the desired effect:
:15amenu MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>
Note
Once a menu exists, its position is fixed for an entire
 editing session and does not change in response to additional
 commands that affect the menu. For example, you cannot change a
 menu’s position by adding a new item to it and prefixing the
 command with a different priority value.

To add some more confusion to priorities and menu placement,
 you can also control item placement within a
 menu by specifying a priority. Higher-priority menu items appear
 further down in the menu than lower-priority items, but the syntax
 is different from priority definitions for menus.
We’ll extend one of our earlier menu examples here by
 assigning a very high value (9999) to the HTML menu item, so that
 it appears at the bottom of the File menu:
:amenu File.HTML .9999 <TAB>syntax=html<CR> :set syntax=html<CR>
Why is there a period before 9999? You need to specify two
 priorities here, separated by a period: one for File and one for
 HTML. We are leaving the File priority blank because it’s a
 pre-existing menu and can’t be changed.
In general, priorities for a menu item appear between the
 item’s menu placement and the item’s definition. For every level
 in the menu hierarchy, you must specify a priority, or include a
 period to indicate that you’re leaving it blank. Thus, if you add
 an item deep in the menu hierarchy—such as under Edit → Global
 Settings → Context lines→ Display—and you want to assign the
 priority 30 to the last item (Display), you would specify the
 priority as ...30, and the
 placement together with the priority would look like:
Edit.Global\ Settings.Context\ lines.Display ...30
As with menu priorities, menu item priorities are fixed once
 they are assigned.
Finally, you can control menu “whitespace” with gvim’s menu separators. Use the same
 definition as you would to add a menu item, but instead of a
 command named “…”, place a hyphen (-) before and after it.

Putting it all together

Now we know how to create, place, and customize menus. Let’s
 make our example a permanent part of our gvim environment by adding the commands
 we discussed to the .gvimrc
 file. The sequence of lines should look something like:
" add HTML menu between File and Edit menus[image: 1]15amenu MyMenu.XML<TAB>syntax=xml :set syntax=xml<CR>
 [image: 2]amenu [image: 3].600 MyMenu.-Sep- :
 [image: 4]amenu [image: 5].650 MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>
 [image: 6]amenu [image: 7].700 MyMenu.XHTML<TAB>syntax=xhtml :set syntax=xhtml<CR>
We now have a top-level, personalized menu with three
 favorite syntax commands quickly available to us. There are a few
 important things to note in this example:
	The first command ([image: 1])
 uses the prefix 15, telling gvim to use priority
 15. For an uncustomized environment, this
 places the new menu between the File and Edit menus.

	The subsequent commands ([image: 2], [image: 4],
 and [image: 6]) do
 not specify the priority, because once
 a priority is determined, no other values are used.

	We’ve used the submenu priority syntax ([image: 3], [image: 5],
 and [image: 7]) after the first command
 to ensure the correct order for each new item. Notice we
 started with the first definition of .600. This
 assures that the submenu item is placed behind the first one
 we defined, because we didn’t assign
 that priority and it therefore
 defaulted to 500.

For even handier access, click on the “scissors” tear-off
 line to have your personalized floating menu, as shown in Figure 13-13.
[image: Personalized floating tearoff menu]

Figure 13-13. Personalized floating tearoff menu

Toolbars

Toolbars are long strips of icons that allow quick access to
 program functions. On Windows, for instance, gvim displays the toolbar shown in Figure 13-14 at the top of the window.
[image: gvim’s toolbar]

Figure 13-14. gvim’s toolbar

Table 13-2 shows the toolbar icons and
 their meanings.

Table 13-2. gvim toolbar icons and their meanings
	Icon	Description	Icon	Description
	[image:]	Open file dialog	[image:]	Find next occurence of search pattern
	[image:]	Save current file	[image:]	Find previous occurence of search pattern
	[image:]	Save all files	[image:]	Choose saved edit session to load
	[image:]	Print buffer	[image:]	Save current edit session
	[image:]	Undo last change	[image:]	Choose Vim script to run
	[image:]	Redo last action	[image:]	Make current project with make command
	[image:]	Cut selection to clipboard	[image:]	Build tags for current directory tree
	[image:]	Copy selection to clipboard	[image:]	Jump to tag under cursor
	[image:]	Paste clipboard into buffer	[image:]	Open help
	[image:]	Find and replace	[image:]	Search help

If these icons are not familiar or intuitive, you can make the
 toolbar show both text and icons. Issue this command:
:set toolbar="text,icons"
Note
As with many advanced features, Vim requires toolbar
 features to be turned on during compilation so people who don’t
 want them can save memory by not including them. The toolbar does
 not exist unless one of the +GUI_GTK, +GUI_Athena, +GUI_Motif, or +GUI_Photon features is compiled into
 your version of gvim. Chapter 9 explains how to recompile Vim, during which
 the link to the gvim executable
 is created.

We modify the toolbar very much like we do menus. As a matter
 of fact, we use the same :menu command, but with extra syntax to specify graphics. Although
 an algorithm exists to help gvim
 find the icon associated with each command, we recommend explicitly
 pointing to the icon graphic.
gvim treats the toolbar as
 a one-dimensional menu. And, just as you control the right-to-left
 position of new menus, you can control the position of new toolbar
 entries by prefixing the menu
 command with a number that determines its positional
 priority. Unlike menus, there is no notion of
 creating a new toolbar. All new toolbar definitions appear on the
 single toolbar. The syntax for adding a toolbar selection is:

:amenu icon=/some/icon/image.bmp ToolBar.NewToolBarSelectionAction
where
 /some/icon/image.bmp is the path of the file
 containing the toolbar button or image (usually an icon) to display
 in the toolbar, NewToolBarSelection is the new
 entry for the toolbar button, and Action
 defines what the button does.
For example, let’s define a new toolbar selection that, when
 clicked or selected, brings up a DOS window in Windows. Assuming the
 Windows path is set up correctly (it should be), we will define our
 toolbar selection to start a DOS window from within gvim by executing the following (this is
 its Action):
:!cmd
For
 the new selection’s toolbar button, or image, we use an icon showing
 a DOS command prompt, shown in Figure 13-15,
 which on our system is stored in $HOME/dos.bmp.
[image: DOS icon]

Figure 13-15. DOS icon

Execute the command:
:amenu icon="c:$HOME/dos.bmp" ToolBar.DOSWindow :!cmd<CR>

 This creates a toolbar entry and adds our icon at the end of the
 toolbar. The toolbar should now look like Figure 13-16. The new icon appears on the rightmost
 end of the toolbar.
[image: Toolbar with added DOS command]

Figure 13-16. Toolbar with added DOS command

Tooltips

gvim lets you define
 tooltips for both menu entries and toolbar icons. Menu tooltips
 display in the gvim command-line
 area when the mouse is over that menu selection. Toolbar tooltips
 pop up graphically when the mouse hovers over a toolbar icon. For
 example, Figure 13-17 shows the tooltip that
 pops up when we put the mouse over the toolbar’s Find Previous
 button.
[image: Tooltip for the Find Previous icon]

Figure 13-17. Tooltip for the Find Previous icon

The :tmenu command
 defines tooltips for both menus and toolbar items. The
 syntax is:
:tmenuTopMenu.NextLevelMenu.MenuItemtool tip text

 where
 TopMenu.NextLevellMenu.MenuItem defines the
 menu as it cascades from the top level all the way to the menu item
 for which you wish to define a tooltip. So, for example, a tooltip
 for the Open menu item under the File menu would be defined with the
 command:
:tmenu File.Open Open a file
Use
 ToolBar for the top-level “menu”
 if you are defining a toolbar item (there is no real top-level menu
 for a toolbar).
Let’s define a pop-up tooltip for the DOS toolbar icon we
 created in the previous section. Enter the command:
:tmenu ToolBar.DOSWindow Open up a DOS window
Now
 when you hover over the newly added toolbar icon, you can see the
 tooltip, as shown in Figure 13-18.
[image: Toolbar with added DOS command and its new tooltip]

Figure 13-18. Toolbar with added DOS command and its new tooltip

Auto and Smart Indenting

Vim offers four increasingly complex and powerful methods
 to automatically indent text. In its simplest form, Vim behaves almost
 identically to vi’s autoindent option, and indeed it uses the
 same name to describe the behavior.
You can choose the indentation method simply by specifying it in
 a :set command, such as:
:set cindent

 Vim offers the following methods, listed in order of increasing
 sophistication:
	autoindent
	Auto indentation closely mimics vi’s autoindent. It differs subtly as to
 where the cursor is placed after indentation is deleted.

	smartindent
	Slightly more powerful than autoindent, but it
 recognizes some basic C syntax primitives for defining
 indentation levels.

	cindent
	As its name implies, cindent embodies a much richer
 awareness of C syntax and introduces sophisticated customization
 beyond simple indentation levels. For example, cindent can be
 configured to match your (or your boss’s) favorite coding style
 rules, including but not limited to how braces ({})
 indent, where braces are placed, whether either or both braces
 are indented, and even how indentation matches included
 text.

	indentexpr
	Lets you define your own expression, which Vim
 evaluates in the context of each new line you begin. With this
 feature, you write your own rules. We refer you to the
 discussions of scripting and functions in this book and to the
 Vim documentation for details. If the other three options don’t
 give you enough flexibility for automatic indentation, indentexpr certainly will.

Vim autoindent Extensions to vi’s autoindent

autoindent for Vim behaves
 almost like vi’s and can be made identical by setting
 the compatible option. One nice
 extension to vi’s autoindent is Vim’s ability to recognize a
 file’s “type” and insert appropriate comment characters when comment
 lines in a file wrap to a new line. This feature works cooperatively
 with either the wrapmargin (text
 wraps within wrapmargin columns
 of the right margin) or textwidth
 (text wraps when characters in a line exceed textwidth characters) options. Figure 14-13 shows the results of identical inputs,
 one using Vim’s autoindent and
 the other using vi.
[image: Difference between Vim and vi autoindent]

Figure 14-13. Difference between Vim and vi autoindent

Notice that in the second block of text (line 16 and beyond)
 there is no leading comment character. Also, with the compatible option set (to mimic
 vi’s behavior), the textwidth option isn’t recognized,
 and now the text wraps only because option wrapmargin has a value.

smartindent

smartindent extends
 autoindent, slightly. It’s
 useful, but if you are writing code in a C-like programming language
 with a fairly complex syntax, you are better served by using
 cindent instead.
smartindent automatically
 inserts indents when:
	A new line follows a line with a left brace
 ({).

	A new line begins with a keyword that’s contained in the
 option cinwords.

	A new line is created preceding a line starting with a
 right brace (}), if the cursor
 is positioned on the line containing the brace and the user
 creates a new line using the O (open line above)
 command.

	A new line is a closing, or right, brace
 (}).

cindent

Regular Vim users who program in C-like languages will want to
 use either cindent or indentexpr for coding. Although indentexpr is more powerful, flexible, and
 customizable, cindent is more
 practical for most programming tasks. It has plenty of settings for
 most programmers’ needs (and corporate standards). Try it for a
 while with its default settings, and then customize it if your
 standards differ.
Note
If the indentexpr option
 has a defined value, it overrides cindent’s actions.

Three options define cindent’s behavior:
	cinkeys
	Defines keyboard keys that signal Vim to reevaluate
 indentation

	cinoptions
	Defines the indentation style

	cinwords
	Defines keywords that signal when Vim should add an
 extra indent in subsequent lines

cindent uses the string
 defined by cinkeys as its ruleset
 to define how to indent. We’ll examine the default value of cinkeys and then look at other settings
 you can define and how they work.
The cinkeys option

cinkeys is a
 comma-separated list of values:
0{,0},0),:,0#,!^X^F,o,O,e

 Here are the values, broken into their separate contexts, with
 brief descriptions for each behavior:
	0{
	0 (zero) sets a beginning of
 line context for the following character, {.
 That is, if you type the character { as the first
 character of a line, Vim will reevaluate the indentation for
 that line.
Do not confuse the zero in this option with the
 behavior “use zero indentation here,” a common practice in C
 indentation. The zero here means “if the character is typed
 at the beginning of the line,” not “force the character to
 appear at the beginning of the line.”
The default indentation for { is zero: no
 added indentation beyond the current level. The following
 example shows typical results:
main ()
{
 if (argv[0] == (char *)NULL)
 { ...

	0}
0)
	As in the previous description, these two settings
 define beginning of line context. Thus,
 if you type either } or) at the
 beginning of a line, Vim reevaluates indentation.
The default indentation for } matches the
 indentation defined for its matching open brace
 {.
The default indentation for) is one
 shiftwidth.

	:
	This is the C label or case
 statement context. If a : (colon) is
 typed at the end of a label or case
 statement statement, Vim reevaluates
 indentation.
The default indentation for : is column
 1, the first column in a line. Do not confuse this with zero
 indentation, which leaves the new line at the same
 indentation level as the previous one. When the indentation
 is 1, the first character of a new line is shifted left
 all the way to the first column.

	0#
	Again, this is a beginning of
 line context. When # is the first
 character typed in a line, Vim reevaluates
 indentation.
Default indentation, as in the previous definition,
 shifts the entire line to the first column. This is
 consistent with the practice of beginning macros
 (#define...) in column 1.

	!^F
	The special character ! defines any
 following character as a trigger to
 reevaluate the indentation in the current line. In this
 case, the triggering character is ^F, which
 stands for CTRL-F, so the
 default behavior is for Vim to reevaluate a line’s
 indentation any time you type CTRL-F.

	o
	This context defines any new line you create, whether
 by pressing the ENTER key
 in insert mode or by using the o (open new line) command.

	O
	This context covers the creation of a new line
 above the current line using the
 O (open new line above)
 command.

	e
	This is the else context. If you
 begin a line with the word else, Vim reevaluates indentation.
 Vim does not recognize this context until the final “e” of
 else is typed.

cinkeys syntax rules. Each cinkeys definition
 consists of an optional prefix (one of !,
 *, or 0) and the key for which
 indentation is reevaluated. The prefixes have the following
 meanings:
	!
	Indicates a key (default CTRL-F) that causes Vim to
 reevaluate indentation on the current line. You can add an
 additional key definition as a command (by using the
 += syntax) without overriding the preexisting
 command. In other words, you can provide multiple keys to
 trigger line indentation. Any key you add to the
 ! definition still performs its old function as
 well.

	*
	Tells Vim to reevaluate the current line indentation
 before inserting the key.

	0
	Sets a beginning of line context.
 The key you specify after the 0 triggers a
 reevaluation of indentation only when typed as the first
 character of a line.
Note
Be aware of the distinction in vi and Vim between “first
 character in a line” and “first column in a line.” You
 already know that typing ^ moves to the first
 character of a line, not necessarily the first column
 (flush left); the same is true of inserting with
 I. In the same way, the 0 prefix
 applies to entering a character as the first character in
 a line, regardless of whether it is flush left.

cinkeys has special key
 names and provides ways to override any reserved characters, such
 as those used as prefix characters. Here are the special key
 options:
	<>
	Use this form to define keys literally. For special
 nonprinting keys, use the spelled-out versions. For example,
 you can define the literal character “:” with
 <:>. Another example for a nontyping key
 is to define the “up arrow” as
 <Up>.

	^
	Use the caret (^) to signify a control
 character. For example, ^F defines the key
 CTRL-F.

	o
O
e
:
	We saw these special keys in the default value for
 cinkeys.

	= word
=~ word
	Use these to define a word that should receive special
 behavior. Once the string word is
 matched, if it is the first text on a new line, Vim
 reevaluates indentation.
The form
 =~word is the same
 as =word except that
 it ignores case.
Note
The term word is an unfortunate
 misnomer. More properly, it represents beginning
 of word, because the trigger occurs as soon as
 the string matches, but it does not require that the
 matched end of string also be the end of word. Vim’s
 built-in documentation gives the example of
 end matching both end and
 endif.

The cinwords option

cinwords
 defines keywords that, when typed, trigger extra
 indentation on the following line. The option’s default value is:

if,else,while,do,for,switch

 This covers the standard keywords in the C programming
 language.
Note
These keywords are case-sensitive. In checking for them,
 Vim even ignores the setting of the ignorecase option. If you need
 variations for different cases of keywords, you must specify all
 combinations in the cinwords
 string.

The cinoptions option

cinoptions controls
 how Vim reindents lines of text in their C context. It
 includes settings to control a number of code formatting
 standards, such as:
	How far to indent a code block enclosed by braces

	Whether to insert a newline in front of a brace that
 follows a condition statement

	How to align blocks of code relative to their enclosing
 braces

cinoptions defines 28
 settings with its default value:
s,e0,n0,f0,{0,}0,^0,:s,=s,l0,b0,gs,hs,ps,ts,is,+s,c3,C0,/0,(2s,us,U0,w0,W0,
 m0,j0,)20,*30
 The very length of the option gives you a sense of
 how many ways Vim lets you customize indentation. Most
 customization with cinoptions
 defines slight differences in context blocks. Some customizations
 define how far to scan (how many lines forward and backward in the
 file to go) in order to establish the right context and properly
 evaluate indentation.
Settings that alter the amount of indentations for various
 contexts can increase or decrease levels of indentation. Also, you
 can redefine the number of columns to use for indentation. For
 example, setting cinoptions=f5
 causes an opening brace ({) to be indented five columns, so long as it
 is not inside any other braces.
Another way to define increments of indentation is by some
 multiplier (which doesn’t have to be an integer) of shiftwidth. If, in the previous example,
 you append w to the definition (i.e., cinoptions=f5w), the opening brace
 shifts five shiftwidths.
Insert a minus sign (-) before any numeric
 value to alter the indentation level to the left (a negative
 indentation).
Warning
This option and its string value is one to modify with
 great care. Remember that when you use = syntax,
 you redefine an option completely. Because cinoptions carries so many possible
 settings, use very fine-grained commands to make changes:
 += to add a setting, -= to remove an
 existing setting, and -= followed by
 += to change an existing setting.

The following is a brief list of the options you are most
 likely to change. It is a small subset of the settings in cinoptions, and many readers may find
 the other (or even all) settings useful to
 customize.
	>n (default
 is s)
	Any line where indentation is indicated should be
 indented n places. The default for this
 is s, meaning that the default indentation for
 a line is one shiftwidth.

	f n
{ n
	The f defines how far to indent an
 opening unnested brace ({). The default value
 is zero, thus aligning braces with their logical
 counterpart. For example, a brace following a line with a
 while statement is placed under the “w” of the
 while.
The { behaves the same way as the
 f but applies to nested
 opening braces. Again, this one defaults to an indent level
 of zero.
Figures 14-14 and 14-15 show two examples of
 identical text entry in Vim, the first example with cinoptions=s,f0,{0, and the second
 with cinoptions=s,fs,{s.
 For both examples, option shiftwidth has the value 4 (four columns).
[image: cinoptions=s,f0,{0]

Figure 14-14. cinoptions=s,f0,{0

[image: cinoptions=s,fs,{s]

Figure 14-15. cinoptions=s,fs,{s

	} n
	Use this setting to define a closing brace’s
 (}) offset from its matching brace. The default
 is zero (aligned with the matching brace).

	^ n
	Add n to the current indentation
 inside a set of braces ({...}) if the opening
 brace is in column one.

	: n
= n
b n
	These three control indentation in case statements. With
 :, Vim indents case labels
 n characters from the position of its
 corresponding switch statement. The default is
 one shiftwidth.
The = setting defines the offset for
 lines of code from their corresponding case label. The
 default is to indent statements one shiftwidth.
The b setting defines where to place
 break statements. The default (zero) aligns
 break with the other statements within the
 corresponding case block. Any nonzero value
 aligns the break with its corresponding
 case label.

) n
* n
	These two settings tell Vim how many lines to scan to
 find unclosed parentheses (default is 20 lines) and unclosed
 comments (default is 30 lines), respectively.
Tip
Ostensibly, these two settings limit how hard Vim
 has to work to look for matches. With today’s powerful
 computers, you should consider ratcheting these values up
 to assure more complete scope management to match comments
 and parentheses. Try doubling each to 40 and 60
 as a starting point.

indentexpr

indentexpr, if defined,
 overrides cindent so that you can
 define indentation rules and tailor them exactly to your language
 editing needs.
indentexpr defines an
 expression to be evaluated each time a new line is created in a
 file. This expression resolves to an integer that Vim uses as the
 indentation of the new line.
In addition, the option indentkeys can define useful keywords in
 the same way that cinkeys
 keywords define lines after which indentation is reevaluated.
The bad news is that it is a nontrivial project to write
 customized indentation rules from scratch for any language. The good
 news is it’s likely that the work is already done. Look in the
 $VIMRUNTIME/indent directory to
 see whether your favorite language is represented. A quick peek
 today reveals more than 70 indent files.
The most common programming languages are represented,
 including ada, awk,
 docbook (the indent file is named docbk), eiffel,
 fortran, html,
 java, lisp,
 pascal, perl, php,
 python, ruby,
 scheme, sh,
 sql, and zsh. There is
 even an indent file defined for xinetd!
You can tell Vim to automatically detect your file type and
 load the indent file by putting the command filetype indent on in your .vimrc file. Now Vim will try to detect
 what file type you are editing and load a corresponding
 indent definition file for you. If the indent
 rules do not fill your needs—for example, if they indent in some
 unfamiliar or unwanted fashion—turn the definitions off with the
 command :filetype indent
 off.
We encourage power users to explore and learn from the indent
 definition files that come with Vim. And if you develop new
 definition files or improvements to existing ones, we encourage you
 to submit them to vim.org for possible addition
 to the Vim package.

A Final Word on Indentation

Before ending our discussion, it’s worth noting a couple of
 points about working with automatic indenting:
	When automatic indenting isn’t
	Any time you act on a line in an edit session with
 automatic indenting and you change that line’s indentation
 manually, Vim flags that line and will no longer try to
 automatically define its indentation.

	Copy and paste
	When you paste text into your file where automatic
 indenting is turned on, Vim considers this regular input and
 applies all automatic indentation rules. In most cases, this
 is probably not what you intend. Any indentation in pasted
 text is tacked on to applied indentation rules. Typically the
 result is text that progressively skews to the right side of
 the screen with large indentation and no corresponding retreat
 to the left side.

To avoid this awkward situation and to paste text intact
 without side effects, set Vim’s paste option before adding the imported
 text. paste comprehensively
 reconfigures all of Vim’s automatic features to faithfully
 incorporate pasted text. To return to automatic mode, simply reset
 the paste option with the command
 :set nopaste.

Chapter 15. Other Cool Stuff in Vim

Chapters 10 through 14 covered powerful Vim features and
 techniques we think you should know about to make effective use of the
 editor. This chapter takes a lighter look at Vim. It’s a catch-all for
 some of the features that didn’t fit into previous topics, ideas about
 editing and the Vim philosophy, and some fun things about Vim (not that
 the earlier chapters weren’t fun!).
HTML Your Text

Have you ever needed to present your code or text to a group? Have
 you ever tried to do a code review but were using someone else’s Vim
 configuration and couldn’t figure it out? Consider converting your
 text or code to HTML and viewing it from a browser.
Vim provides three methods to create an HTML version of your
 text. They all create a new buffer with the same name as the original
 file and the suffix .html Vim
 splits the current session window and displays the HTML version of the
 file in the new window:
	gvim “Convert to
 HTML”
	This is the friendliest method, and is built into the
 gvim graphical editor
 (described in Chapter 13). Open the Syntax
 menu in gvim and select
 “Convert to HTML.”

	2html.vim script
	This is the underlying script invoked by the “Convert to
 HTML” menu option described in the previous item. Invoke it
 through the command:
:runtime!syntax/2html.vim

 It doesn’t accept a range; it converts the whole buffer.

	TOhtml command
	This is more flexible than the 2html.vim script, because you can
 specify an exact range of lines you want to convert. For
 instance, to convert lines 25 through 44 of a buffer,
 enter:
:25,44TOhtml

One advantage of using gvim
 for HTML conversion is that the GUI lets it accurately detect colors
 and create correct corresponding HTML directives. These methods still
 work in a non-GUI context, but the results are less assured to be
 accurate and may not be very useful.
Note
It’s up to you to manage the newly created file. Vim does not
 save it for you; it merely creates a buffer. We recommend providing
 a management policy to save and synchronize HTML
 versions of your text files. For example, you could create some
 autocommands to trigger the creation and saving of your HTML
 files.

The saved HTML file can be viewed in any web browser. Some
 people may not be familiar with ways to open files on the local system
 in their browsers. It’s quite easy, though: virtually all browsers
 offer an Open File menu option in the File menu and display a file
 selection dialog to let you navigate to the folder containing the HTML
 file. If you plan on using this feature on a regular basis, we
 recommend building up a collection of bookmarks for all of your
 files.

What’s the Difference?

Changes between different versions of a file are often subtle,
 and a tool that lets you view precise differences at a glance could
 save hours of work. Vim integrates the well known Unix diff command into a very sophisticated
 visualization interface invoked through its vimdiff
 command.
There are two equivalent ways to invoke this feature: as a
 standalone command and as an option to Vim:
$vimdiff old_file new_file
$vim -d old_file new_file
Typically, the first file to be compared is an old version of a
 file, and the second is a newer version, but that is by convention
 only. Indeed, it’s possible to make a case for reversing the
 order.
Figure 15-5 shows an example of vimdiff output. Because of limited real
 estate, we’ve squeezed the width and turned off Vim’s wrap option to allow illustration of the
 differences.
[image: vimdiff results]

Figure 15-5. vimdiff results

Though the figure does not convey the full impact of the visual
 content (particularly because colors are reduced to gray), it shows
 some key characteristic behaviors:
	On line 4, you can see a dark block on the left line that
 isn’t on the right line. This is a highlighted word indicating a
 difference between the two lines. Similarly, on line 32, the
 righthand line contains a highlighted word that is not on the
 left.

	On line 11 of both sides, Vim has created a 15-line
 fold. These 15 lines in both files are
 identical, so Vim folds them to maximize useful “diff” information
 on the screen.

	Lines 41–42 on the left are highlighted, whereas in the
 corresponding positions on the right, strings of hyphens
 (-) indicate that the lines are missing. The line
 numbering differs from this
 point on, because the right side has two lines fewer, but
 corresponding lines in the two files still line up
 horizontally.

The vimdiff feature comes
 with all Unix-like Vim installations because the diff command is a Unix standard. Non-Unix
 Vim installations should come with Vim’s own version of diff. Vim allows drop-in replacements of
 diff commands as long as they
 create standard diff output.
The diffexpr variable defines
 the replacement expression for the default vimdiff behavior and is typically
 implemented as a script that operates on the following
 variables:
	v:fname_in
	The first input file to be compared

	v:fname_new
	The second file to be compared

	v:fname_out
	A file that captures the diff output

Author and History

 The original vi was
 developed at UCB in the late 1970s by Bill Joy, then a computer
 science graduate student, and later a founder and vice president of
 Sun Microsystems.
Prior to nvi, Bill Joy first
 built ex, by starting with and
 heavily enhancing the sixth edition ed editor. The first enhancement was open
 mode, done with Chuck Haley. Between 1976 and 1979, ex evolved into vi. Mark Horton then came to Berkeley, added
 macros “and other features,”[51] and did much of the labor on vi to make it work on a large number of
 terminals and Unix systems. By 4.1 BSD (1981), the vi editor already had essentially all of the
 features we have described in Part I of this
 book.
Despite all of the changes, vi’s core was (and is) the original Unix
 ed editor. As such, it was code
 that could not be freely distributed. By the early 1990s, when they
 were working on 4.4 BSD, the BSD developers wanted a version of
 vi that could be freely distributed
 in source code form.
 Keith Bostic of UCB started with elvis 1.8,[52] which was a freely distributable vi clone, and began turning it into a “bug
 for bug compatible” clone of vi.
 nvi also complies with the POSIX
 Command Language and Utilities Standard (IEEE P1003.1) where it makes
 sense to do so.
Although no longer affiliated with UCB, Keith Bostic continues
 to distribute nvi. The current
 version at the time of this writing is nvi 1.79.
nvi is important because it
 is the “official” Berkeley version of vi. It is part of 4.4 BSD-Lite II, and it is
 the vi version used on the various
 popular BSD variants, such as NetBSD and FreeBSD.

[51] From the nvi reference
 manual. Unfortunately, it does not say which features.

[52] Although little or no original elvis code is left.

GUI Interfaces

nvi does not provide a
 graphical user interface (GUI) version.

Sources and Supported Operating Systems

nvi can be obtained
 from http://www.bostic.com/vi. This is a web
 page from which you can download the current version,[54] and can also ask to be added to a mailing list that
 sends notifications about new versions of nvi and new features.
The source code for nvi is
 freely distributable. The licensing terms are described in the
 LICENSE file in the distribution,
 and they permit distribution in source and binary form.
nvi builds and runs under
 Unix. It can also be built to run under LynxOS 2.4.0, and possibly
 later versions. It may build and run on other POSIX-compliant systems
 as well, but the documentation does not contain a specific list of
 known operating systems.
Compiling nvi is
 straightforward. Retrieve the distribution via ftp. Uncompress and untar it, run the
 configure program, and then run
 make:
$gzip -d < nvi.tar.gz | tar -xvpf -
...
$ cd nvi-1.79; ./configure
...
$ make
...
nvi should configure and
 build with no problems. Use make
 install to install it.
Should you need to report a bug or problem in nvi, the person to contact is Keith Bostic,
 at bostic@bostic.com.

[54] A GUI version of nvi is
 under development; see the web page for contact information if
 you’re interested.

Important Command-Line Arguments

elvis is not
 typically installed as vi, though
 it can be. If invoked as ex, it
 operates as a line editor and allows the Q command from vi mode to switch into ex mode.
elvis has a number of
 command-line options. The most useful are described here:
	-a
	 Load each file named on the command line into a
 separate window.

	-c
 command
	 Execute command upon
 startup. This is the POSIX version of the historical +command syntax. (The old syntax
 is also accepted.)

	-f
 filename
	 Use filename for the session
 file instead of the default name. Session files are discussed
 later in this chapter.

	-G gui
	 Use the given interface. The default is the
 termcap interface. Other
 choices include x11, windows, curses, open, and quit. Not all the interfaces may be
 compiled into your version of elvis.

	-i
	Start editing in input mode instead of in command mode.
 This may be easier for novice users.

	-o
 logfile
	 Redirect the startup messages out to a file,
 instead of stdout/stderr. This is of critical importance
 to MS Windows users because Windows discards anything written to
 standard output and standard error, which made WinElvis
 configuration problems almost impossible to diagnose. With
 -ofilename you can
 send the diagnostic info to a file and view it later.

	-r
	Perform recovery after a crash.

	-R
	Start editing each file in read-only mode.

	-s
	 Read an ex
 script from standard input and execute (per the POSIX standard).
 This bypasses all initialization scripts.

	-S
	 Set the option security=safer for the whole session,
 not just execution of .exrc
 files.
 This adds a certain amount of security, but it should not
 necessarily be trusted blindly.

	-SS
	 Set the option security=restricted, which is even
 more paranoid than security=safer.

	-t tag
	 Start editing at the specified
 tag.

	-V
	 Output more verbose status information. Useful
 for diagnosing problems with initialization files.

	-?
	 Print a summary of the possible options.

Initialization

 This section describes elvis’s session files and itemizes the steps
 it takes during initialization.
The Session File

elvis is intended
 to eventually meet Common Open System Environment (COSE) standards.
 These require that programs be able to save their state and return
 to that saved state at a later time.
To be able to do this, elvis maintains all its state in a session
 file. Normally elvis creates the
 session file when it starts and removes it when it exits, but if
 elvis crashes, a left-over
 session file can be used to implement recovery of the edited
 files.

Initialization Steps

elvis performs the
 following initialization steps. Interestingly, much of the
 customization for elvis is moved
 out of editor options and into initialization files:
	Initialize all hardcoded options.

	Select an interface from those compiled into elvis. elvis will choose the “best” of the
 ones that are compiled in and that can work. For
 example, the X11 interface is considered to be better than the
 termcap interface, but it may
 not be usable if the X Window System is not currently
 running.
The selected interface can process the command line for
 initialization options that are specific to it.

	Create the session file if it doesn’t exist; otherwise,
 read it (in preparation for recovery).

	 Initialize the elvispath option from the ELVISPATH environment variable.
 Otherwise, give it a default value. "~/.elvislib:/usr/local/lib/elvis" is
 a typical value, but the actual value will depend on how
 elvis was configured and
 built.

	 Search elvispath for an ex script named elvis.ini and run it. The default
 elvis.ini file performs the
 following actions:
	Chooses a digraph table based on the current operating
 system. (Digraphs are a way to define the system’s extended
 ASCII character set and how characters from the extended set
 should be entered.)

	Sets options based on the program’s name (for example,
 ex versus vi mode).

	Handles system-dependent tweaks, such as setting the
 colors for X11 and adding menus to the interface.

	Picks an initialization filename, either .exrc for Unix or elvis.rc for non-Unix systems.
 Call this file f.

	 If the EXINIT environment variable
 exists, executes its value. Otherwise, it executes :source~/f, where f is the filename chosen
 previously.

	 If the exrc option has been set, runs the
 safely source command on
 f in the current
 directory.

	For X11, sets the normal, bold, and italic fonts, if
 they have not been set already.

	 Load the pre- and post-read and pre- and
 post-write command files, if they exist. Also load the elvis.msg file. All of these files
 are described later in this chapter.

	Load and display the first file named on the command
 line.

	 If the -a option was given, load
 and display the rest of the files, each in its own
 window.

Extended Regular Expressions

 We introduced extended regular expressions earlier in
 the section Extended Regular Expressions. The additional
 metacharacters available in elvis
 are:
	\|
	 Indicates alternation.

	\(...\)
	Used for grouping, to allow the application of additional
 regular expression operators.

	\+
	 Matches one or more of the preceding regular
 expressions.

	\?
	Matches zero or one of the preceding regular expressions.

	\@
	Matches the word under the cursor.

	\=
	 Indicates where to put the cursor when the text
 is matched. For instance, hel\=lo would put the cursor on
 the second l in the next occurrence of
 hello.

	\{...\}
	 Describes an interval expression, such as
 x\{1,3\} to match
 x, xx, or
 xxx.

POSIX bracket expressions (character classes, etc.) are
 available.

Improved Editing Facilities

 This section describes the features of elvis that make simple text editing easier
 and more powerful.
Command-Line History and Completion

 Everything you type on the ex command line is saved in a buffer named
 Elvisexhistory. This is accessible like any
 other elvis buffer, but it is not
 directly useful when just viewed in a window.
To access the history, you use the arrow keys to display
 previous commands and to edit them. Use ↑ and ↓ to
 page through the list, and ← and
 → to move around on a command line.
 You can insert characters by typing, and you can erase them by
 backspacing over them. Much as when editing in a regular vi buffer, the backspace does remove the
 characters, but the line is not updated as you type, so be
 careful!
When entering text into the Elvis ex
 history buffer (i.e., on the colon command line), the
 TAB key can be used for filename
 expansion. The preceding word is assumed to be a partial filename,
 and elvis searches for all
 matching files. If there are multiple matches, it fills in as many
 characters of the name as possible, and then beeps; or, if no
 additional characters are implied by the matching filenames,
 elvis lists all matching names
 and redisplays the command line. If there is a single match,
 elvis completes the name and
 appends a tab character. If there are no matches, elvis simply inserts a tab
 character.
To get a real tab character, precede it with a ^V. You can also disable filename
 completion entirely by setting the Elvis ex history
 buffer’s inputtab option to
 tab, via the following
 command:
:(Elvis ex history)set inputtab=tab

Tag Stacks

 Tag stacking is described earlier in the section
 Tag Stacks. In elvis, tag stacking is very
 straightforward, as shown in Tables 17-5 and 17-6.
Table 17-5. elvis tag commands
	Command	Function
	ta[g][!]
 [tagstring]	Edit the file containing
 tagstring as defined in the tags file. The !
 forces elvis to switch to
 the new file if the current buffer has been modified but not
 saved.

	stac[k]	Display the current tag stack.

	po[p][!]	Pop a cursor position off the stack, restoring the cursor to its previous
 position.

Table 17-6. elvis command mode tag commands
	Command	Function
	^]	Look up the location of the identifier
 under the cursor in the tags file, and move to that
 location. The current location is automatically pushed onto
 the tag stack.

	^T	Return to the previous location in the tag stack, i.e., pop off one
 element.

Unlike traditional vi, when
 you type ^], elvis looks up the entire word containing
 the cursor, not just the part of the word from the cursor location
 forward.
 In HTML mode (discussed in the later section Display Modes), the commands all work the same,
 except that :tag expects to be
 given a URL instead of a tag name. URLs don’t depend on having a
 tags file, so the tags file is ignored when in HTML mode.
 elvis supports file:, http:, and ftp: URLs. It can also write via FTP.
 Simply give a URL wherever elvis
 expects a filename. To access your own account on an FTP site
 (instead of the anonymous account), the directory name portion of
 the URL must begin with /~.
 elvis will read your ~/.netrc file to find the right name and
 password. The html display mode
 makes good use of these features! (The network functions work in
 Windows and OS/2, too.)
Several :set options affect
 how elvis works with tags, as
 described in Table 17-7.
Table 17-7. elvis options for tag management
	Option	Function
	taglength,
 tl	Control the number of significant characters in a tag that is to be looked up.
 The default value of zero indicates that all characters are
 significant.

	tags, tagpath	The value is a list of directories and/or filenames in which to look for
 tags files. elvis looks for a file named
 tags in any entry that
 is a directory. Entries in the list are colon-separated (or
 semicolon-separated on DOS/Windows), in order to allow
 spaces in directory names. The default value is just
 tags, which looks for a
 file named tags in the
 current directory. This can be overridden by setting the
 TAGPATH environment
 variable.

	tagstack	When set to true, elvis stacks each location on the
 tag stack. Use :set
 notagstack to disable tag stacking.

elvis supports the
 extended tags file format
 described in Chapter 8. elvis comes with its own version of
 ctags (named elvtags, to avoid conflict with the
 standard version). It generates the enhanced format described
 earlier. Here is an example of the special !_TAG_ lines it produces:
!_TAG_FILE_FORMAT 2 /supported features/
!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted/
!_TAG_PROGRAM_AUTHOR Steve Kirkendall /kirkenda@cs.pdx.edu/
!_TAG_PROGRAM_NAME Elvis Ctags //
!_TAG_PROGRAM_URL ftp://ftp.cs.pdx.edu/pub/elvis/README.html //
!_TAG_PROGRAM_VERSION 2.1 //
In elvis, each window has
 its own tag stack.
In general, elvis does some
 innovative things with tags. When reading overloaded tags, it tries
 to guess which one you’re looking for and presents the most likely
 one first. If you reject it (by hitting ^] again, or typing :tag again), it then presents you with the
 next most likely match, and so on. It also notes the attributes of
 the tags that you reject or accept and uses those to improve its
 guessing heuristic for later searches.
 The :tag command’s
 syntax has been extended to allow you to search for tags by features
 other than just the tag name. There are too many details to go into
 here; see the chapter in the online help that describes the use of
 tags.
 There is also a :browse command, which finds all matching
 tags at once and builds an HTML table from them. From this table,
 you can follow hypertext links to any matching tags you want.
 Finally, there is the tagprg option, which, if set, discards the
 built-in tag searching algorithm and instead runs an external
 program to perform the search.

Infinite Undo

 With elvis, before
 being able to undo and redo multiple levels of changes, you must first set the undolevels option to the number of levels
 of “undo” that elvis should
 allow. A negative value disallows any undoing
 (which is not terribly useful). The elvis documentation warns that each level
 of undo uses around 6K bytes of the session file (the file that
 describes your editing session), and thus can eat up disk space
 rather quickly. It recommends not setting undolevels any higher than 100 and
 “probably much lower.”
Once you’ve set undolevels
 to a nonzero value, you enter text as normal. Then, each successive
 u command undoes one change. To
 redo (undo the undo), you use the (rather mnemonic) ^R (Ctrl-R) command.
In elvis, the default value
 of undolevels is zero, which
 causes elvis to mimic Unix
 vi. The option applies per buffer
 being edited; see the earlier section Initialization Steps for a description of how to set it
 for every file that you edit.
Once undolevels has been
 set, adding a count to either the u or ^R
 commands undoes or redoes the given number of changes.

Arbitrary Length Lines and Binary Data

elvis can edit
 files with arbitrary length lines and with an arbitrary number of
 lines.
 Under Unix, elvis
 does not treat a binary file differently from any other file. On
 other systems, it uses the elvis.brf file to set the binary option. This avoids newline
 translation issues. You can enter 8-bit text by typing ^X followed by two hexadecimal digits.
 Using the hex display mode is an
 excellent way to edit binary files. The elvis.brf file and the hex display mode are described in the
 later section Interesting Features.

Left-Right Scrolling

 You enable left-right scrolling in elvis using :set
 nowrap. The value of sidescroll controls the number of
 characters by which elvis shifts
 the screen when scrolling left to right. The ^W S command toggles the value of this
 option.

Visual Mode

elvis allows you to
 select regions one character at a time, one line at a time, or
 rectangularly, using the commands shown in Table 17-8.
Table 17-8. elvis block mode command characters
	Command	Function
	v	Start region selection, character-at-a-time mode.

	V	Start region selection, line-at-a-time
 mode.

	^V	Start region selection, rectangular mode.

elvis highlights the text
 (using reverse video) as you are selecting it. To make your
 selection, simply use the normal motion keys. The screen here shows
 a rectangular region:
The 6th edition of <citetitle>Learning the vi Editor</citetitle>
brings thebook into the late 1990’s.
In particular, besides the “original” version of
<command>vi</command> that comes as a standard part of every Unix
system, there are now a number of freely available “clones”
or work-alike editors.
elvis permits only a few
 operations on selected areas of text. Some operations work only on
 whole lines, even if you’ve selected a region that does not contain
 whole lines (see Table 17-9).
Table 17-9. elvis block mode operations
	Command	Operation
	c, d, y	Change, delete, or yank text. Only d works exactly on
 rectangles.

	<, >, !	Shift text left or right, and filter text.
 These operate on the whole lines containing the marked
 region.

After using the d command
 to delete the region, the screen now looks like this:
The 6th edition of <citetitle>Learning the vi Editor</citetitle>brings the 90’s.
In particulo;original” version of
<command>vi as a standard part of every
system, there are n available “clones”
or work-alike editors.

GUI Interfaces

 The screen shots and the explanation in this section
 were supplied by Kevin Buettner, Thomas Dickey, and Paul Fox. We thank
 them.
There are several X11 interfaces for vile, each utilizing a different toolkit
 based on the Xt library.There is a plain “No Toolkit” version that does not use
 a toolkit, but it has custom scrollbars and a bulletin board widget
 for geometry management. There are versions that use the Motif,
 Athena, or OpenLook toolkits.[62] The Motif and Athena versions are the best supported,
 and have menu support.
There is a “single” Win32 GUI—with variations to support OLE and
 Unicode. On the surface, they look the same.
Fortunately, the basic interface is the same for all versions.
 There is a single top-level window that can be split into two or more
 panes. The panes, in turn, may be used to display multiple views of a
 buffer, multiple buffers, or a mixture of both. In vile parlance these panes are called
 “windows,” but to avoid confusion, we will continue to call them
 “panes” in the following discussion.
Building xvile

Although there are binary packages for xvile, you may wish to compile it on a
 platform with no package support.
When building xvile, you
 have to choose which toolkit version to use. This is done when you
 configure vile with the configure command.[63] The relevant options are:
	--with-screen=
 value
	Specify terminal driver. The default is tcap, for the termcap/terminfo driver. Other values
 include curses, ncurses, ncursesw, X11, OpenLook, Motif, Athena, Xaw, Xaw3d, neXtaw, and ansi.

	--with-x
	Use the X Window System. This is the “No Toolkit”
 version.

	--with-Xaw-scrollbars
	Use Xaw scrollbars
 rather than the vile custom
 scrollbars.

	--with-drag-extension
	Use the drag/scrolling extension with Xaw.

xvile Basic Appearance and Functionality

The following figures show xvile’s Motif interface. It is similar to
 the Athena interface.
[image: The xvile GUI window]

Figure 18-2. The xvile GUI window

Figure 18-2 shows three panes:
	The manpage for vile,
 which shows the use of underlining and boldface.

	A buffer misc.c, from
 tin, which shows syntax
 highlighting (this time with colors—grayscaled for printing—for
 preprocessor statements, comments, and keywords).

	A three-line pane, which is active (noted by a darker
 status line), named [Completions], for filename
 completions. The pane is coordinated with the minibuffer (the
 colon command line): the first line reads Completions prefixed by
 /usr/build/in/tin-1.9.2+/src/m:, and the minibuffer
 reads Find file: m. The rest
 of the pane contains the actual filenames that match. The first
 line of [Completions] and the contents
 change as the user completes the filename (and presses TAB to tell vile to show the reduced set of
 choices).

[image: Buffers and completions in vile]

Figure 18-3. Buffers and completions in vile

Figure 18-3 also shows three
 panes:
	The [Help] pane, which
 of course shows the most important feature of an editor (how to
 exit without modifying your files). ☺

	The [Buffer List],
 which indicates that charset.c is the # (previous) buffer. The % (current) buffer is not shown on the
 list, since only the “visible” buffers are displayed in this
 copy of [Buffer List].
 Supplying an argument to the * command would have shown the
 invisible buffers as well. Buffers 0 and 2 are charset.c and misc.c. They have been loaded, so
 their sizes (12425 and 89340) are displayed in the [Buffer List]. Buffer 1 (<vile.1>) holds a formatted
 manpage generated by a macro and does not correspond to a
 file.[64] Buffer 3 (color.c) has not been loaded, so a
 u is displayed in the first
 column, and the size is shown as zero.

	The [Completions]
 buffer is active. This time it displays tag completions for the
 partial match co, and the
 Completions prefixed message is not shown
 because the buffer is scrolled down, which is another side
 effect of pressing TAB:
 vile cycles through a
 scrolling action so that all of the choices will be shown, even
 when the window is small.[65]

Generated buffers such as [Help] and [Buffer List] are “scratch” buffers. When
 popped down, they are closed, and their content is discarded. There
 are other buffers, e.g., those containing scripts, which are
 “invisible.” Both are normally not shown in [Buffer List].
Scrollbars

 At the right of each pane is a scrollbar that may
 be used in the customary fashion to move about in the buffer.
 Note, however, that the customary fashion varies from toolkit to
 toolkit. In the Athena and “No Toolkit” versions, the middle mouse
 button may be used to drag the “thumb” or visible indicator
 around. The left and right mouse buttons move down or up
 (respectively) in the buffer. The amount moved depends on the
 location of the mouse cursor on the scrollbar. Placing it near the
 top will scroll by as little as one line. When placed near the
 bottom, the text will scroll by as much as a full pane.
The Motif scrollbar is probably more familiar. The leftmost
 mouse button is used for all operations. Clicking on the little
 arrows will move up or down by one line. The scrollbar indicator
 may be dragged in order to move about, and scrolling up or down by
 an entire pane can be accomplished by clicking above or below the
 indicator.
In each version, there is a small handle above or below
 (i.e., between) scrollbars that may be used to adjust the size of
 two adjacent panes. In the “No Toolkit” version of xvile, the pane resize handle blends in
 with the status line of two adjacent panes. In the other versions,
 the resize handle is more distinguishable. But in each case, the
 mouse cursor will change to a heavy vertical double arrow when
 placed above the resize handle. The windows may be resized by
 clicking on and dragging the handle.
A pane can be split into two by holding the Ctrl key down
 and clicking the left mouse button on a scrollbar. Then you will
 have two views of a particular buffer. Other vile commands may be used to replace one
 of the views with another buffer if desired. A pane may be deleted
 by holding the Ctrl key down and clicking the middle mouse button.
 Sometimes after creating a lot of panes, you find yourself wanting
 to use all of the window real estate for just one pane. To do
 this, Ctrl-click the right mouse button; all other panes will be
 removed, leaving the entire xvile window containing only the pane on
 which you clicked. These actions are summarized in Table 18-2.
Table 18-2. vile pane management commands
	Command	Function
	Ctrl-left button	On a scrollbar, split the pane.

	Ctrl-middle button	Delete a pane.

	Ctrl-right button	Make the clicked pane the only pane.

Setting the cursor position and mouse motions

 Within the text area of a pane, the cursor may be
 set by clicking the left mouse button. This not only sets the
 cursor position, but also sets the pane in which editing is being
 done. To set just the pane but preserve the old position, click on
 the status line below the text you wish to edit.
A mouse click is viewed as a motion, just like 4j is considered a motion. To delete
 five lines, you could enter d4j, which will delete the current line
 and the four below it. You can do the same thing with a mouse
 click. Position your cursor at the place you want to start
 deleting from and then press d.
 After this, click in the buffer at the point to which you wish to
 delete. Mouse clicks are real motions and may be used with other
 operators as well.

Selections

 Selections may be made by holding the left mouse
 button down and dragging with the mouse. This is called the
 PRIMARY selection. Release of the mouse button causes the
 selection to be yanked and made available (if desired) for
 pasting. You can force the selected region to be rectangular by
 holding the Ctrl key down while dragging with the left button
 depressed. If the dragging motion goes out of the current window,
 text will be scrolled in the appropriate direction, if possible,
 to accommodate selections larger than the window. The speed at
 which the scrolling occurs will increase with the passage of time,
 making it practical to select large regions of text
 quickly.
Individual words or lines may be selected by double- or
 triple-clicking on them.
A selection may be extended by clicking the right mouse
 button. As with the left button, the selection can be adjusted or
 scrolled by holding the right button down and dragging with it.
 Selections may be extended in any window open to the same buffer
 as the one in which the selection was started. That is, if you
 have two views of a buffer (in two different panes), one
 containing the start of the buffer and the other the end, it is
 possible to select the entire buffer by clicking the left button
 at the beginning of the pane that shows the beginning of the
 buffer and then clicking the right button in the pane that shows
 the end of the buffer. Also, selections may be extended in a
 rectangular fashion by holding the Ctrl key down in conjunction
 with the right mouse button.
The middle button is used for pasting the selection. By
 default, it pastes at the last text cursor position. If the Shift
 key is held down while clicking the middle button, the paste
 occurs at the position of the mouse cursor.
A selection may be cleared (if owned by xvile) by double-clicking on one of the
 status lines.

Clipboard

 Data may be exchanged between many X applications
 via the PRIMARY selection. This selection is set and manipulated
 as described previously.
Other applications use the CLIPBOARD selection to exchange
 data between applications. On many Sun keyboards, selected text is
 moved to the clipboard by pressing the COPY key and pasted by pressing the
 PASTE key. If you find that you
 cannot paste text selected in xvile into other applications (or vice
 versa), it may well be that these applications use the CLIPBOARD
 selection instead of the PRIMARY selection. (The other mechanism
 used among really old applications involves the use of a ring of
 cut buffers.)
xvile provides
 two commands for manipulating the clipboard: copy-to-clipboard and paste-from-clipboard. When copy-to-clipboard is executed, the
 contents of the current selection are copied to the special
 clipboard kill register (denoted by ; in the register list). When an
 application requests the clipboard selection, xvile gives it the contents of this kill
 register. The paste-from-clipboard command requests
 clipboard data from the current owner of the CLIPBOARD
 selection.
Users of Sun systems may want to put the following key
 bindings in their .vilerc
 file in order to make use of the COPY and PASTE keys found on their
 keyboards:
bind-key copy-to-clipboard #-^
bind-key paste-from-clipboard #-*
Key bindings are described in detail later in this
 chapter.

Resources

xvile has many resources
 that can be used to control appearance and behavior. Font choice
 is particularly important if you want italic or oblique fonts to
 be displayed properly.
 vile’s documentation has a
 complete list of resources, as well a sample set of .Xdefault entries.

Adding menus

 The Motif and Athena versions have menu support.
 Menu items, which are user-definable, are read from the
 .vilemenu file, in the
 current or home directory.
xvile allows three types
 of menu items:
	Built-in, i.e., specific to the menuing system, such as
 rereading the .vilerc
 file or spawning a new copy of xvile

	Direct invocation of built-in commands (e.g., displaying
 the [Buffer List])

	Invocation of arbitrary command strings (e.g., running
 interactive macros, such as a search command)

We make a distinction between the last two because the
 authors prefer making vile able
 to check the validity of commands before they are
 executed.

Building winvile

 Binaries are available for each release of winvile, but you may wish to compile one
 of the interim patch versions. The sources provide makefiles for the
 Microsoft (makefile.wnt) and
 Borland (makefile.tbc)
 compilers. The former has more features, providing options for
 building with OLE, perl, and built-in syntax highlighting.
 The Win32 GUI can be built with either compiler environment.

winvile Basic Appearance and Functionality

Figures 18-4 and 18-5 show
 winvile’s Win32 GUI interface. On
 the surface, it is much like the “No Toolkit” X11 interface, having
 scrollbars. Underneath the surface—which is easily accessed—it is
 more elaborate than the Motif interface.
[image: winvile with non-Unicode font]

Figure 18-4. winvile with non-Unicode font

Figure 18-4 shows a view of winvile editing Unicode data:
	The font dialog is initially set to the fixed-pitch system
 font. Like xvile, the font
 can be set when winvile is
 started, or via a script. It can also be set via an OLE server.
 Finally, as shown here, it can use the Win32 common
 controls.

	The data is Unicode UTF-16, with no byte order mark. It is
 underlined, since the highlighting palette used underlining and
 cyan for coloring quoted strings.

	The default system font cannot display the characters in
 the file. winvile sees that
 the font is small, and displays the Unicode data in hexadecimal
 form.

[image: winvile with Unicode font]

Figure 18-5. winvile with Unicode font

Figure 18-5 shows the result of
 selecting a more capable font. If you select the system font again,
 winvile will show the hexadecimal
 values again. If you prefer to see the wide characters as
 hexadecimal all the time, vile
 has an option setting for this purpose.
[image: The winvile recent files menu]

Figure 18-6. The winvile recent files menu

Figure 18-6 shows some of the winvile menu functions, which
 include:
	winvile extends the
 system menu, which is accessed by right-clicking on the title
 bar of the window.
It also has the same selections on a right-click pop-up
 menu, eliminating the need to go up to the title bar. That is
 enabled by the “Menu” entry at the bottom.

	The menus provide the open, save, print, and font
 operations typical of GUI applications. You can also set
 winvile’s current working
 directory with the CD entry.
The corresponding dialogs are also accessible from the
 Win32 console version, though without a menu.

	winvile also allows you
 to browse the Windows Favorites
 folder.

	The recent files (and recent folders) entries select from
 a user-configurable number of “recent” files (or folders).
 winvile saves the names in
 the user’s registry data, making them available for each
 instance of winvile that
 might be running.

[62] Sun Microsystems dropped support for OpenLook before
 releasing Solaris 9 in 2002.

[63] The configure script
 should work for any Unix (or similar) platform. For building on
 OpenVMS, use the vmsbuild.com script. Build
 instructions are in comments at the top of the script.

[64] The angle-brackets in the name <vile.1> are a convention to
 avoid naming conflicts, since two buffers are not allowed to
 have the same name.

[65] The [Completions]
 buffer is automatically sized, showing no more lines than
 necessary. If it is too large for the available space,
 vile borrows up to ¾
 of the space from an adjacent pane.

Extended Regular Expressions

 We introduced extended regular expressions earlier in
 the section Extended Regular Expressions. vile provides essentially the same
 facilities as nvi’s extended option. This
 includes the POSIX bracket expressions for character classes, [[:alnum::]], with some extensions
 (additional classes and abbreviations), and interval expressions, such
 as {,10}. The syntax is somewhat
 different from nvi, relying on
 additional backslash-escaped characters:
	\|
	Indicates alternation: house\|home.

	\+
	Matches one or more of the preceding regular expression.

	\?
	Matches zero or one of the preceding regular expression.

	\(...\)
	 Provides grouping for *, \+, and \?, as well as making matched subtexts
 available in the replacement part of a substitute command
 (\1, \2, etc.).

	\s, \S
	Match whitespace and nonwhitespace characters,
 respectively.

	\w, \W
	 Match “word-constituent” characters
 (alphanumerics and the underscore, “_”) and non-word-constituent
 characters, respectively. For example, \w\+ would match C/C++ identifiers and
 keywords.[66]

	\d, \D
	Match digits and nondigits, respectively.

	\p, \P
	 Match printable and nonprintable characters,
 respectively. Whitespace is considered to be printable.

vile allows the escape
 sequences \b, \f, \r,
 \t, and \n to appear in the replacement part of a
 substitute command. They stand for backspace, form feed, carriage
 return, tab, and newline, respectively. Also, from the vile documentation:
Note that vile mimics
 perl’s handling of \u\L\1\E instead of vi’s. Given :s/\(abc\)/\u\L\1\E/, vi will replace with
 abc whereas vile and perl will replace with
 Abc. This is somewhat more useful for
 capitalizing words.

[66] For the pedantic among you, it also matches
 identifiers that start with a leading digit; usually this
 isn’t much of a problem.

Improved Editing Facilities

 This section describes the features of vile that make simple text editing easier
 and more powerful.
Command-Line History and Completion

vile records your
 ex commands in a buffer named
 [History]. This feature is
 controlled with the history
 option, which is true by default. Turning it off disables the
 history feature and removes the [History] buffer. The command show-history splits the screen and
 displays the [History] buffer in
 a new window.
The colon command line is really a minibuffer. You can use it
 to recall lines from the [History] buffer and edit them.
You use the ↑ and ↓ keys to scroll backward and forward in
 the history, and ← and → to move around within the line. Your
 current delete character (usually BACKSPACE) can be used to delete
 characters. Any other characters you type will be inserted at the
 current cursor position.
You can toggle the minibuffer into vi mode by typing the mini-edit character (by default, ^G). When you do this, vile will highlight the minibuffer using
 the mechanism specified by the mini-hilite
 option. The default is reverse,
 for reverse video. In vi mode,
 you can use vi-style commands for
 positioning. You can also use other vile commands that are appropriate to
 editing within a single line, such as i, I,
 a, and A. vile
 decides which commands to accept based on its command tables, which
 allows your key bindings to work in the minibuffer, too.
An interesting feature is that vile will use the history to show you
 previous data that corresponds to the command you’re entering. For
 instance, after typing :set
 followed by a space, vile will
 prompt you with Global value:. At
 that point, you can use ↑ to see
 previous global variables that you have set, should you wish to
 change one of them.
The ex command line
 provides completion of various sorts. As you type the name of a
 command, you can hit the TAB key at
 any point. vile fills out the
 rest of the command name as much as possible. If you type a TAB a second time, vile creates a new window that shows you
 all the possible completions.
Completion applies to built-in and user-defined vile commands, tags, filenames, modes
 (described later in this chapter), variables, enumerated values
 (such as color names), and to the terminal characters (the character
 settings such as backspace, suspend, and so on, derived from your
 stty settings).
As a side note, this leads to an interesting phenomenon. In
 vi-style editors, commands may
 have long names, but they tend to be unique in the first few
 characters, since abbreviations are accepted. In Emacs-style
 editors, command names often are not unique in the first several
 characters, but command completion still allows you to get away with
 less typing.

Tag Stacks

 Tag stacking is described earlier in the section
 Tag Stacks. In vile, tag stacking is available and
 straightforward. It is somewhat different than the other clones,
 most notably in the vi mode
 commands that are used for tag searching and popping the tag stack.
 Table 18-3 shows the vile tag commands.
Table 18-3. vile tag commands
	Command	Function
	next-tag	Continues searching through the tags
 file for more matches.

	pop[!]	Pops a cursor position off the stack,
 restoring the cursor to its previous
 position.

	show-tagstack	Creates a new window that displays the tag stack. The display changes as tags are
 pushed onto or popped off of the stack.

	ta[g][!] [tagstring]	Edit the file containing
 tagstring as defined in the tags file. The !
 forces vile to switch to
 the new file if the current buffer has been modified but not
 saved.

The vi mode commands are
 described in Table 18-4.
Table 18-4. vile command mode tag commands
	Command	Function
	 ^]

	Look up the location of the identifier
 under the cursor in the tags file, and move to that
 location. The current location is automatically pushed onto
 the tag stack.

	^T, ^X ^]
	Return to the previous location in the tag stack, i.e., pop off one
 element.

	 ^A ^]

	Same as the :next-tag command.

As in the other editors, options control how vile manages the tag-related commands, as
 shown in Table 18-5.
Table 18-5. vile options for tag management
	Option	Function
	pin-tagstack	Makes tag searches and pop ups not change the
 current window, thereby “pinning” it. This option is false by
 default.

	tagignorecase	Makes tag searches ignore case. This option is false by
 default.

	taglength	Controls the number of significant characters
 in a tag that is to be looked up. The default value of
 zero indicates that all characters are
 significant.

	tagrelative	When using a tags file in another directory,
 filenames in that tags
 file are considered to be relative to the directory where
 the tags file
 is.

	tags	Can be set to a whitespace-separated list of
 tags files to use
 for looking up tags. vile loads all tags files into separate buffers
 that are hidden by default, but that can be edited if you
 wish. You can place environment variables and shell
 wildcards into tags.

	tagword	Uses the whole word under the cursor for the
 tag lookup, not just the subword starting at the current
 cursor position. This option is disabled by
 default, which keeps vile
 compatible with vi.

Infinite Undo

vile is similar in
 principle but different in practice from the other editors. Like
 elvis and Vim, you can set an
 undo limit, but like nvi, the
 . command will do the next undo
 or redo as appropriate. Separate vi mode commands implement successive undo
 and redo.
vile uses the
 undolimit option to control how
 many changes it will store. The default is 10, meaning that you can
 undo up to the 10 most recent changes. Setting it to zero allows
 true “infinite undo,” but this may consume a lot of memory.
To start an undo, first use either the u or ^X
 u commands. Then, each successive . command will do another undo. Like
 vi, two u commands just toggle the state of the
 change; however, each ^X u
 command does another undo.
The ^X r command does a
 redo. Typing . after the first
 ^X r will do successive redos.
 You can provide a count to the ^X
 u and ^X r commands, in
 which case vile performs the
 requested number of undos or redos.

Arbitrary Length Lines and Binary Data

vile can edit files
 with arbitrary length lines, and with an arbitrary number of
 lines.
vile automatically handles
 binary data. No special command lines or options are required. To
 enter 8-bit text, type ^V
 followed by an x and two
 hexadecimal digits, or a 0 and
 three octal digits, or three decimal digits.
You can also enter 16-bit Unicode values by typing ^V followed by a u and up to four hexadecimal digits. If
 the current buffer’s file-encoding option is one of the Unicode
 flavors (utf-8, utf-16, or utf-32), vile stores it directly as UTF-8,
 displaying it according to the capabilities of the terminal or
 display.
This leads us into the topic of localization.
Locale support

For many years, vile had
 only rudimentary locale support. In part this was because locale
 support on the various platforms was rudimentary (except for
 vendor Unix systems). It had
 its own character type tables (i.e., control, numeric, printable,
 punctuation, as well as
 application-specific filename, wildcard, shell), allowing you to
 specify which of those non-ASCII characters were printable.
Times change, and vile
 continues to evolve according to its users’ needs. Here is a brief
 summary of those changes, ordered logically rather than in the
 order they were developed:
	Rather than having a fixed notion of the character
 types, vile imports the
 host’s character type tables and then provides commands to
 modify the data via scripts.[67]

	vile regular
 expressions support POSIX character classes, as well as
 classes corresponding to vile’s own character types.

	vile supports
 extraction of tokens from the screen, e.g., for tags, for scripting, etc. Once,
 these tokens were a mixture of character-type tests with
 special parsing logic. Now, they are purely regular
 expressions, with no need for the parsing logic.

	Editing a file containing 8-bit data—e.g., data encoded
 in ISO-8859-7 (Greek)—when the host’s locale encoding uses
 UTF-8 can be challenging. When vile starts up, it checks whether
 the host locale ends with UTF-8 (or similar), e.g., el_GR.UTF-8. If so, it then supports
 editing in the corresponding 8-bit locale, e.g., el_GR.

	Similarly, when editing files in a host environment
 supporting UTF-8, there are files encoded in UTF-8. In the
 newest release, you can tell vile to write a file in various
 Unicode encodings, and to read the same encodings. The 8-bit
 editing model is carried forward, translating to the 8-bit
 encoding for buffers that are marked as 8-bit, and directly
 editing (i.e., with no translation) the Unicode
 buffers.

These are all extensions; at each stage the older features
 are still retained.
There are other aspects of localization that are not
 addressed in vile, such as
 message formatting and text collating order.

File formats

When vile reads a file,
 it makes several guesses about its content, in order to present
 you with useful data:
	It checks whether the file permissions allow you to
 write to the file.

	It checks for line endings, which may be different
 flavors of CR, LF, or CR/LF.

	It checks for Unicode byte order marks.

	It checks for Unicode multibyte encodings.

Based on these checks, vile may set properties (called “modes”)
 of the newly read buffer that apply to that buffer. In addition,
 it may translate the data as it is read:
	It removes the line endings from each line, remembering
 the associated recordseparator mode.

	If the file is missing a final line ending, vile sets the nonewline option.

	It translates UTF-16 and UTF-32 data into UTF-8,
 remembering the associated file-encoding option.

When you tell vile to
 write a buffer to a file, it uses these local option settings to
 reconstruct the file.

Incremental Searching

 As mentioned earlier in the section Incremental Searching, you perform incremental searching in
 vile using the ^X S and ^X
 R commands. It is not necessary to set an option to enable
 incremental searching.
The cursor moves through the file as you type, always being
 placed on the first character of the text that matches. ^X S incrementally searches forward
 through the file, whereas ^X R
 incrementally searches backward.
You may wish to add the following commands (described later in
 The vile Editing Model) to your .vilerc file to make the more familiar
 / and ? search commands work incrementally:

bind-key incremental-search /
bind-key reverse-incremental-search ?
 Also of interest is the “visual match” facility,
 which highlights all occurrences of the matched
 expression. For a .vilerc
 file:
set visual-matches reverse
directs vile to use reverse
 video for visual matching. Since the highlighting can sometimes be
 visually distracting, the =
 command turns off any current highlighting until you enter a new
 search pattern.

Left-Right Scrolling

 As mentioned earlier in the section Left-Right Scrolling, you enable left-right scrolling in
 vile using :set nolinewrap. Unlike the other editors,
 left-right scrolling is the default. Long lines are marked at the
 left and right edges with <
 and >. The value of sideways controls the number of characters
 by which vile shifts the screen
 when scrolling left to right. With sideways set to zero, each scroll moves
 the screen by one third. Otherwise, the screen scrolls by the
 desired number of characters.

Visual Mode

vile is different
 from elvis and Vim in the way you
 highlight the text you want to operate on. It uses the “quoted
 motion” command, q.
You enter q at the
 beginning of the region, any other vi motions to get to the opposite end of
 the region, and then another q to
 end the quoted motion. vile
 highlights the marked text.
Arguments to the q command
 determine what kind of highlighting it will do. 1q (same as q) does an exact highlighting, 2q does line-at-a-time highlighting, and
 3q does rectangular
 highlighting.
Typically, you use a quoted motion in conjunction with an
 operator, such as d or y. Thus, d3qjjwq deletes the rectangle indicated by
 the motions. When used without an operator, the region is left
 highlighted. It can be referred to later using ^S. Thus, d
 ^S will delete the highlighted region.
 In addition, rectangular regions can be indicated
 through the use of marks.[68] As you know, a mark can be used to refer to either a
 specific character (when referred to with `) or a specific line (when referred to
 with '). In addition, referring
 to the mark (say, a mark set with mb) with `b instead of 'b can change the nature of the operation
 being done—d'b will delete a set
 of lines, and d`b will delete two
 partial lines and the lines in between. Using the ` form of mark reference gives a more
 “exact” region than the ' form of
 mark reference.
vile adds a third
 form of mark reference. The \
 command can be used as another way of referring to a mark. By
 itself, it behaves just like `
 and moves the cursor to the character at which the mark was set.
 When combined with an operator, however, the behavior is quite
 different. The mark reference becomes “rectangular,” such that the
 action d\b will delete the
 rectangle of characters whose corners are marked by the cursor and
 the character that holds mark b:
	Keystrokes	Results
	ma	 The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings thebook into the late 1990’s.
 In particular, besides the “original” version of
 <command>vi</command> that comes as a standard part of every Unix system,
 there are now a number of freely available “clones”
 or work-alike editors.

	 	Set mark a
 at the b in
 book.

	3jfr	 The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings the book into the late 1990’s.
 In particular, besides the “original” version of
 <command >vi</command> that comes as a standard part of every Unix system,
 there are now a number of freely available “clones”
 or work-alike editors.

	 	Move the cursor to the r
 in number to mark the opposite
 corner.

	^A ~\a	 The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings the BOOK INTO The late 1990’s.
 In particulAR, BESIDES the “original” version of
 <command>vi</COMMAND> that comes as a standard part of every Unix system,
 there are nOW A NUMBER of freely available “clones”
 or work-alike editors.

	 	Toggle the case of the rectangle bounded with
 mark a.

The commands that define arbitrary regions and operate upon
 them are summarized in Table 18-6.
Table 18-6. vile block mode operations
	Command	Operation
	q	Start and end a quoted motion.

	^A r	Open up a rectangle.

	>	Shift text to the right. Same as ^A r when the region is
 rectangular.

	<	Shift text to the left. Same as d when the region is
 rectangular.

	y	Yank the whole region. vile remembers that it was
 rectangular.

	c	Change the region. For a nonrectangular region,
 delete all the text between the end points and enter insert
 mode. For a rectangular region, prompt for the text to fill
 the lines.

	^A u	Change the case of the region to all
 uppercase.

	^A l	Change the case of the region to all
 lowercase.

	^A ~	Toggle the case of all alphabetic characters in
 the region.

	^A SPACE	Fill the region with spaces.

	p, P	Put the text back. vile does a rectangular put if the
 original text was rectangular.

	^A p, ^A P	Force previously yanked text to be put back as
 if it were rectangular. The width of the longest yanked line
 is used for the rectangle’s width.

[67] This feature is useful even on the vendor Unix
 systems, which do not always deliver correct
 tables.

[68] Thanks to Paul Fox for this explanation.

Appendix A. The vi, ex, and Vim Editors

This appendix summarizes the standard features of vi in quick-reference format. Commands entered
 at the colon (known as ex commands
 because they date back to the original creation of that editor) are
 included, as well as the most popular Vim features.
This appendix presents the following topics:
	Command-line syntax

	Review of vi
 operations

	Alphabetical list of keys in command mode

	vi commands

	vi configuration

	ex basics

	Alphabetical summary of ex
 commands

Review of vi Operations

This
 section provides a review of the following:
	vi modes

	Syntax of vi
 commands

	Status-line commands

Command Mode

Once the file is opened, you are in command mode. From command mode, you
 can:
	Invoke insert mode

	Issue editing commands

	Move the cursor to a different position in the file

	Invoke ex
 commands

	Invoke a Unix shell

	Save the current version of the file

	Exit vi

Insert Mode

In insert mode, you can enter new text in the file. You normally enter
 insert mode with the i command.
 Press the ESC key to exit insert
 mode and return to command mode. The full list of commands that
 enter insert mode is provided later in the section Insert Commands.

Syntax of vi Commands

In vi, editing commands
 have the following general form:
[n] operator [m]motion
The basic editing operators are:
	 c
	Begin a change.

	 d
	Begin a deletion.

	 y
	Begin a yank (or
 copy).

If the current line is the object of the operation, the
 motion is the same as the operator: cc, dd,
 yy. Otherwise, the editing
 operators act on objects specified by cursor-movement commands or
 pattern-matching commands. (For example, cf. changes up to the next period.)
 n and m are the number of
 times the operation is performed, or the number of objects the
 operation is performed on. If both n and
 m are specified, the effect is
 n ×
 m.
An object of operation can be any of the following text
 blocks:
	word
	Includes characters up to a whitespace character (space
 or tab) or punctuation mark. A capitalized object is a variant
 form that recognizes only whitespace.

	sentence
	Up to ., !, or ?, followed by two spaces.

	paragraph
	Up to the next blank line or paragraph macro defined by
 the para= option.

	section
	Up to the next nroff/troff section heading defined by the
 sect= option.

	motion
	Up to the character or other text object as specified by
 a motion specifier, including pattern searches.

Examples

	 2cw
	Change the next two
 words.

	 d}
	Delete up to the next
 paragraph.

	 d^
	Delete back to the beginning of
 the line.

	 5yy
	Copy the next five
 lines.

	 y]]
	Copy up to the next
 section.

	 cG
	Change to the end of the edit
 buffer.

More commands and examples may be found in the section Changing and deleting text later in this appendix.

Visual mode (Vim only)

Vim provides an additional facility, “visual mode.” This
 allows you to highlight blocks of text, which then become the
 object of edit commands such as deletion or saving (yanking).
 Graphical versions of Vim allow you to use the mouse to highlight
 text in a similar fashion. See the earlier section Visual Mode Motion for more information.
	 v
	Select text in visual mode one
 character at a time.

	 V
	Select text in visual mode one
 line at a time.

	 CTRL-V
	Select text in visual mode in
 blocks.

Status-Line Commands

Most commands are not echoed on the screen as you input them. However, the status
 line at the bottom of the screen is used to edit these
 commands:
	 /
	Search forward for a
 pattern.

	 ?
	Search backward for a
 pattern.

	 :
	Invoke an ex command.

	 !
	Invoke a Unix command that takes
 as its input an object in the buffer and replaces it with
 output from the command. You type a motion command after the
 ! to describe what should
 be passed to the Unix command. The command itself is entered
 on the status line.

Commands that are entered on the status line must be entered
 by pressing the ENTER key. In addition, error messages
 and output from the CTRL-G command
 are displayed on the status line.

Name
fold

Synopsis
address fo

Fold the lines specified by address. A
 fold collapses several lines on the screen into one line,
 which can later be unfolded. It doesn’t affect the text of the
 file. {Vim}

Name
foldopen

Synopsis
[address] foldo[!]

Open folds in the specified address, or
 at the present address if none is specified. Add a ! to open more than one level of folds.
 {Vim}

Name
redo

Synopsis
red

Restore last undone change. Same as CTRL-R. {Vim}

Name
shell

Synopsis
sh

Create a new shell. Resume editing when the shell terminates.

Name
split

Synopsis
[count] sp [+num] [filename]

Split the current window and load filename in the
 new window, or the same buffer in both windows if no file is
 specified. Make the new window count lines
 high, or if count is not specified, split the
 window into equal parts. With the +n
 argument, begin editing on line num.
 num may also be a pattern of the form
 /pattern. {Vim}

Name
substitute

Synopsis
[address] s [/pattern/replacement/] [options] [count]

Replace the first instance of pattern
 on each of the specified lines with
 replacement. If pattern
 and replacement are omitted, repeat last
 substitution. count specifies the number of
 lines on which to substitute, starting with
 address. (Spelling out the command name does
 not work in Solaris vi.)

Options
	 c
	Prompt for confirmation before
 each change.

	 g
	Substitute all instances of
 pattern on each line
 (global).

	 p
	Print the last line on which a
 substitution was made.

Examples
:1,10s/yes/no/gSubstitute on first 10 lines
:%s/[Hh]ello/Hi/gc Confirm global substitutions
:s/Fortran/\U&/ 3 Uppercase “Fortran” on next three lines
:g/^[0-9][0-9]*/s//Line &:/For every line beginning with one or more digits, add “Line” and a colon

Name
tags

Synopsis
tags

Print list of tags in the tag stack. {Vim}

Name
unhide

Synopsis
[count] unh

Split screen to show one window for each active buffer in
 the buffer list. If specified, limit the number of windows to
 count. {Vim}

Name
v

Synopsis
[address] v/pattern/[command]

Execute command on all lines
 not containing pattern.
 If command is not specified, print all such
 lines. v is equivalent to
 g!. See global, earlier in this list.

Example
:v/#include/dDelete all lines except “#include” lines

Name
write

Synopsis
[address] w[!] [[>>] file]

Write lines specified by address to
 file, or write full contents of buffer if
 address is not specified. If
 file is also omitted, save the contents of
 the buffer to the current filename. If >> file is
 used, append lines to the end of the specified
 file. Add a ! to force the editor to write over any
 current contents of file.

Examples
:1,10w name_listCopy first 10 lines to file name_list
:50w >> name_listNow append line 50

Name
!

Synopsis
[address] !command

Execute Unix command in a shell. If
 address is specified, use the lines contained
 in address as standard input to
 command, and replace those lines with the
 output and error output. (This is called
 filtering the text through the
 command.)

Examples
:!lsList files in the current directory
:11,20!sort -fSort lines 11–20 of current file

Name
ENTER

Synopsis

Print the next line in the file. (For ex only, not from the : prompt in vi.)

elvis 2.2 Options

elvis 2.2 has a total
 of 225 options that affect its behavior. Table B-3 summarizes the most important ones.
 Most options described in Table B-1 are not
 repeated here.
Table B-3. elvis 2.2 set options
	Option	Default	Description
	autoiconify
 (aic)	noautoiconify	Iconify the old window when de-iconifying a new
 one. X11 only.

	backup (bk)	nobackup	Make a backup file (xxx.bak) before writing the current
 file out to disk.

	binary (bin)		The buffer’s data is not text. This option is set
 automatically.

	boldfont
 (xfb)		The name of the bold font. X11
 only.

	bufdisplay
 (bd)	normal	The default display mode for the buffer (hex, html, man, normal, syntax, or tex).

	ccprg (cp)	cc
 ($1?$1:$2)	The shell command for :cc.

	directory
 (dir)		Where to store temporary files. The default is
 system-dependent.

	display
 (mode)	normal	The name of current display mode, set by the
 :display
 command.

	elvispath
 (epath)		A list of directories in which to search for
 configuration files. The default is
 system-dependent.

	focusnew
 (fn)	focusnew	Force keyboard focus into the new window. X11
 only.

	font (fnt)		The name of the normal font, for the Windows and
 X11 interfaces.

	gdefault
 (gd)	nogdefault	Cause the substitute command to change all
 instances.

	home (home)	$HOME	The home directory for ~ in filenames.

	italicfont (xfi)		The name of the italic font. X11
 only.

	locked
 (lock)	nolocked	Make the buffer read-only and cause most commands
 that would modify the buffer to fail. Usually set
 automatically for read-only HTML files.

	lpcolor
 (lpcl)	nolpcl	Use color when printing; for :lpr.

	lpcolumns (lpcols)	80	The width of a printer page; for :lpr.

	lpcrlf (lpc)	nolpcrlf	The printer needs CR/LF for newline in the file;
 for :lpr.

	lpformfeed
 (lpff)	nolpformfeed	Send a form feed after the last page; for
 :lpr.

	lpheader
 (lph)	nolph	Print a header at the top of the page; for
 :lpr.

	lplines
 (lprows)	60	The length of a printer page; for :lpr.

	lpout (lpo)		The printer file or filter, for :lpr. A typical value might be
 !lpr. The default is
 system-dependent.

	lptype (lpt)	dumb	The printer type, for :lpr. The value should be one of:
 ps, ps2, epson, pana, ibm, hp, cr, bs, dumb, html, or ansi.

	lpwrap (lpw)	lpwrap	Simulate line wrap; for :lpr.

	makeprg (mp)	make $1	The shell command for :make.

	prefersyntax (psyn)	never	Control use of syntax mode. Useful for HTML and
 manpages to show the input instead of the formatted contents.
 With a value of never,
 never use syntax mode. With writable, do so for writable files.
 With local, do so for files
 in the current directory. With always, always use syntax mode.

	ruler (ru)	noruler	Display the cursor’s line and
 column.

	security
 (sec)	normal	One of normal
 (standard vi behavior),
 safer (attempt to prevent
 writing malicious scripts), or restricted (try to make elvis safe for use as a restricted
 editor). In general, use the :safely command to set this; don’t
 do it directly.

	showmarkups
 (smu)	noshowmarkups	For the man
 and html modes, show the
 markup at the cursor position, but not
 elsewhere.

	sidescroll
 (ss)	0	The sideways scrolling amount. Zero mimics
 vi, making lines
 wrap.

	smartargs
 (sa)	nosmartargs	Place the arguments for a function on the screen
 based on a tags file
 lookup after typing the function name and the function character (usually a left
 parenthesis).

	spell (sp)	nospell	Highlight misspelled words. This also works with
 programs, based on lookups in a tags file.

	taglength
 (tl)	0	Defines the number of characters that are
 significant for tags. Default (zero) means that all characters
 are significant.

	tags
 (tagpath)	tags	The list of possible tag files.

	tagstack
 (tsk)	tagstack	Remember the origin of tag searches on a
 stack.

	undolevels
 (ul)	0	The number of undoable commands. Zero mimics
 vi. You probably want to
 set this to a bigger number.

	warpback
 (wb)	nowarpback	Upon exit, move the pointer back to the xterm that started elvis. X11 only.

	warpto (wt)	don't	How ^W ^W
 forces pointer movement: don't for no movement, scrollbar moves the pointer to the
 scrollbar, origin moves the
 pointer to the upper left corner, and corners moves it to the corners
 furthest from and nearest to the current cursor position. This
 forces the X display to pan, to make sure the window is
 entirely onscreen.

Appendix C. Problem Checklists

This appendix consolidates the problem checklists that are
 provided throughout Part I. Here they are
 presented in one place for ease of reference.
Problems with vi Commands

	When you type commands, text jumps around on the
 screen and nothing works the way it’s supposed
 to.
Make sure you’re not typing the J command when you mean j.
You may have hit the CAPS LOCK key without noticing it. vi
 is case-sensitive; that is, uppercase commands (I, A,
 J, etc.) are different from
 lowercase commands (i, a, j), so all your commands are being
 interpreted not as lowercase but as uppercase commands. Press the
 CAPS LOCK key again to return to
 lowercase, press ESC to ensure
 that you are in command mode, then type either U to restore the last line changed or
 u to undo the last command.
 You’ll probably also have to do some additional editing to fully
 restore the garbled part of your file.

Problems with Deletions

	You’ve deleted the wrong text and you want to get
 it back.
There are several ways to recover deleted text. If you’ve
 just deleted something and you realize you want it back, simply
 type u to undo the last command
 (for example, a dd). This works
 only if you haven’t given any further commands, since u undoes only the most recent command.
 On the other hand, a U will
 restore the line to its pristine state, the way it was before
 any changes were applied to it.
You can still recover a recent deletion, however, by using
 the p command, since vi saves the last nine deletions in nine
 numbered deletion buffers. If you know, for example, that the
 third deletion back is the one you want to restore, type:
"3p
to “put” the contents of buffer number 3 on the line below
 the cursor. This works only for a deleted
 line. Words, or a portion of a line, are not
 saved in a buffer. If you want to restore a deleted word or line
 fragment, and u won’t work, use
 the p command by itself. This
 restores whatever you’ve last deleted.

Where to Start

There is surely no activity with more built-in obsolescence than
 publishing World Wide Web sites in a printed book. We have tried to
 publish URLs that we hope will have a reasonable lifetime.
In the meantime, the “Tips” section of the elvis documentation lists interesting
 vi-related web sites (that’s where
 we started), and the Usenet comp.editors newsgroup is also a good place
 to look.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	! (exclamation point)
		buffers, interaction with, Buffers and Their Interaction with Windows
	
	cinkeys syntax rules, The cinkeys option
	
	ex commands starting with, Problems Saving Files
	
	mapping keys for insert mode, Mapping Keys for Insert Mode
	
	overriding save warnings, Saving and Exiting Files
	
	for Unix commands, Executing Unix Commands, Filtering text with vi
	

	# (pound sign)
		for alternate
 filename, Calling in New Files
	
	buffers, describing, Buffers and Their Interaction with Windows
	
	meta-information, extracting, Categories of Features
	
	show line numbers command, Defining a Range of Lines
	

	$ (dollar sign)
		cursor movement command, Movement Within a Line, Movement on the current line
	
	for last file line
 (ex), Line Addressing Symbols
	
	marking end of change region, Changing Text
	
	metacharacter, Metacharacters Used in Search Patterns
	

	$MYGVIMRC variable, Starting gvim
	
	% (percent sign)
		buffers, describing, Buffers and Their Interaction with Windows
	
	for current
 filename, Calling in New Files
	
	every line symbol (ex), Global Replacement
	
	matching brackets, A Special Search Command
	
	meta-information, extracting, Categories of Features
	
	representing every line (ex), Line Addressing Symbols
	

	& (ampersand)
		metacharacter, Metacharacters Used in Replacement Strings
	
	to repeat last
 command, More Substitution Tricks
	

	' (apostrophe)
		'' (move to mark) command, The G (Go To) Command, Marking Your Place
	
	marking lines (vile), Visual Mode
	
	move to mark command, Marking Your Place
	

	() (parentheses)
		((move cursor) command, Movement by Text Blocks
	
) (move cursor) command, Movement by Text Blocks
	
	\(...\)
 metacharacters, Metacharacters Used in Search Patterns, Extended Regular Expressions
	
	\(…\)
 metacharacters, Extended Regular Expressions
	
	finding and removing, More Examples of Mapping Keys
	
	as grouping
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	matching, A Special Search Command
	

	(underscore), using in file names, Opening a File
	
	* (asterisk)
		cinkeys syntax rules, The cinkeys option
	

	* (asterisk) metacharacter, Metacharacters Used in Search Patterns
	
	+ (plus sign), Command-Line Options
		\+
 metacharacter, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	buffers, describing, Buffers and Their Interaction with Windows
	
	metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	move cursor command, Single Movements, Movement by Line, Movement by Line
	
	for next file lines
 (ex), Line Addressing Symbols
	
	running commands when starting vi, Advancing to a Specific Place
	

	+-- marker, as a fold placeholder, Manual Folding
	
	+/ option, Command-Line Options
	
	+? option, Command-Line Options
	
	, (comma)
		for line ranges (ex), ex Commands, Defining a Range of Lines
	
	repeat search command, Current Line Searches
	

	- (hyphen)
		buffers, describing, Buffers and Their Interaction with Windows
	
	manual folding and, Manual Folding
	
	move cursor command, Single Movements, Movement by Line
	
	for previous file lines
 (ex), Line Addressing Symbols
	

	-? option (elvis), Important Command-Line Arguments
	
	-? option (vile), Important Command-Line Arguments
	
	-b option, Command-Line Options
	
	-e option, Command-Line Options
	
	-h option, Command-Line Options
	
	. (dot)
		current line symbol (ex), Line Addressing Symbols
	
	echo command and, Variables
	
	filenames and, Opening a File
	
	meta-information, extracting, Categories of Features
	
	metacharacter, Metacharacters Used in Search Patterns
	
	repeat command, Repeat, Confirming Substitutions
	
	undo/redo (nvi), Infinite Undo
	

	.viminfo file, Categories of Features
	
	.vimrc startup file
		strftime() function and, Using the strftime() function
	

	/ (slash)
		pathname separator, Opening a File
	
	referring to marks (vile), Visual Mode
	
	search command, The vi Text Editor, Movement by Searches
		opening files at specific place, Advancing to a Specific Place
	

	0 (move cursor) command, Movement Within a Line, Movement on the current line
	
	\1, \2, ...
 metacharacters, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	
	: (colon)
		:! commands and, Executing Unix Commands
	
	ex commands and, ex Commands
	
	line-editing mode, Problems Opening Files
	
	meta-information, extraction, Categories of Features
	
	using ex commands and, The vi Text Editor
	

	:ls command
		buffers, describing and, Buffers and Their Interaction with Windows
	

	:sball command, Buffer Command Synopsis
	
	:tmenu command, Tooltips
	
	:tselect command, Tag Stacking
	
	:version command, Where to Get Vim
	
	:vertical command, Resizing Command Synopsis
	
	:w (write) command, Read-Only Mode
	
	:w command, saving existing files, Problems Saving Files
	
	:w! command overwriting files, Problems Saving Files
	
	; (semicolon)
		for line ranges (ex), Redefining the Current Line Position
	
	repeat search command, Current Line Searches
	

	<> (angle brackets)
		<< (redirect/here document)
 operator, Here Documents
	
	>> (redirect/append) operator, Appending to a Saved File
	
	\< \>
 metacharacters, Metacharacters Used in Search Patterns
	
	matching, A Special Search Command
	

	= (equals sign)
		:= (identify line) command, Defining a Range of Lines
	
	\=
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	buffers, describing, Buffers and Their Interaction with Windows
	

	? (question mark)
		\?
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	search command, The vi Text Editor, Movement by Searches
	

	@ (at sign)
		@ option (vile), Important Command-Line Arguments, Initialization
	
	\@ metacharacter, Extended Regular Expressions
	

	@-functions, @-Functions
	
	[] (brackets)
		[[,]] (move
 cursor) commands, Movement by Text Blocks
	
	[: :]
 metacharacters, POSIX Bracket Expressions
	
	[. .]
 metacharacters, POSIX Bracket Expressions
	
	[= =]
 metacharacters, POSIX Bracket Expressions
	
	metacharacters, Metacharacters Used in Search Patterns
	

	\ (backslash) metacharacter, Metacharacters Used in Search Patterns, Metacharacters Used in Replacement Strings
		\1, \2, ...
 metacharacters, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	
	\< \>
 metacharacters, Metacharacters Used in Search Patterns
	
	\@ metacharacter, Extended Regular Expressions
	
	\b metacharacter, Extended Regular Expressions
	
	\{...}
 metacharacter, Extended Regular Expressions
	
	\{…}
 metacharacter, Extended Regular Expressions
	
	\d, \D
 metacharacters, Extended Regular Expressions
	
	\e
 metacharacter, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	
	\E
 metacharacter, Metacharacters Used in Replacement Strings
	
	\=
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	\f, \F
 metacharacters, Extended Regular Expressions
	
	\i, \I
 metacharacters, Extended Regular Expressions
	
	\k, \K
 metacharacters, Extended Regular Expressions
	
	\n
 metacharacter, Metacharacters Used in Replacement Strings, Extended Regular Expressions, Extended Regular Expressions
	
	\p, \P
 metacharacters, Extended Regular Expressions, Extended Regular Expressions
	
	\(...\)
 metacharacters, Metacharacters Used in Search Patterns, Extended Regular Expressions
	
	\(…\)
 metacharacters, Extended Regular Expressions
	
	\+
 metacharacter, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	\?
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	\r metacharacter, Extended Regular Expressions
	
	\s, \S
 metacharacters, Extended Regular Expressions, Extended Regular Expressions
	
	\t metacharacter, Extended Regular Expressions
	
	\u and \l
 metacharacters, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	\U and \L
 metacharacters, Metacharacters Used in Replacement Strings
	
	\|
 metacharacter, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	\w, \W
 metacharacters, Extended Regular Expressions
	

	^ (caret)
		cursor movement command, Movement on the current line
	
	metacharacter, Metacharacters Used in Search Patterns
	
	representing CTRL key, Keystrokes, Keystrokes
		(see also CTRL- commands)
	

	within [] metacharacters, Metacharacters Used in Search Patterns
	

	^] command, Tag Stacking
	
	` (backquote)
		`` (move to mark)
 command, The G (Go To) Command, Marking Your Place
	
	marking characters (vile), Visual Mode
	
	move to mark command, Marking Your Place
	

	{ } (braces)
		\{...}
 metacharacter, Extended Regular Expressions
	
	\{…}
 metacharacter, Extended Regular Expressions
	
	{ (move cursor)
 command, Movement by Text Blocks
	
	} (move cursor)
 command, Movement by Text Blocks
	
	cinkeys option, The cinkeys option
	
	finding and matching, A Special Search Command
	
	folding and, Folding and Outlining (Outline Mode)
	
	metacharacters, Extended Regular Expressions, Extended Regular Expressions
	

	| (vertical bar)
		alternation metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	\|
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	for combining ex
 commands, Combining ex Commands
	
	cursor movement command, Movement on the current line
	
	manual folding and, Manual Folding
	

	~ (tilde)
		:~ (substitute using last search pattern) command
 (ex), More Substitution Tricks
	
	along left screen margin, Opening a File
	
	case conversion command, Changing Case
	
	folding, Manual Folding
	
	as last
 replacement text, Metacharacters Used in Search Patterns
	
	metacharacter, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	

	~~ (folding), toggling case, Manual Folding
	

A
	a (append) command, Simple Edits, Appending Text, Insert Commands
		ex,
	

	A (append) command, More Ways to Insert Text, Insert Commands
	
	-a option (elvis), Important Command-Line Arguments, Initialization Steps
	
	a status flag, Buffers and Their Interaction with Windows
	
	a: Vim variable, Variables
	
	:ab
 (abbreviation) command (ex), Word Abbreviation,
		commands in .exrc files, The .exrc File
	

	abbreviations of commands, Word Abbreviation, Abbreviations of Vim Commands and Options
	
	absolute line addresses, Defining a Range of Lines
	
	absolute pathnames, Opening a File
	
	Acme editor, The vi Text Editor
	
	“Address
 search hit BOTTOM without matching pattern” message, Repeating Searches
	
	:alias command
 (elvis), Interesting Features
	
	alphabetizing text blocks (example), Sorting Text Blocks: A Sample ex Script
	
	alternate .exrc files, Alternate Environments
	
	alternate filenames (#), Calling in New Files
	
	alternation, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	:amenu command, Basic menu customization
	
	ampersand (&)
		metacharacter, Metacharacters Used in Replacement Strings
	
	to repeat last
 command, More Substitution Tricks
	

	angle brackets (<>)
		<< (redirect/here document)
 operator, Here Documents
	
	>> (redirect/append) operator, Appending to a Saved File
	
	\< \>
 metacharacters, Metacharacters Used in Search Patterns
	
	matching, A Special Search Command
	

	apostrophe (') command
		'' (move to mark) command, The G (Go To) Command, Marking Your Place
	
	move to mark command, Marking Your Place
	

	appending text, Simple Edits, Appending Text
		from named buffers, Yanking to Named Buffers
	
	to saved files, Appending to a Saved File
	

	:apropos command
 (vile), Online Help and Other Documentation
	
	:ar command, Using the Argument List,
	
	archives on vi (FTP), Amaze Your Friends!
	
	:args command, Using the Argument List,
	
	arity keyword (ctags), The New tags Format
	
	arrays (Vim), Arrays
	
	arrow keys, Single Movements
	
	ASCII characters, Digraphs: Non-ASCII Characters
	
	asterisk (*), Metacharacters Used in Search Patterns
		cinkeys syntax rules and, The cinkeys option
	

	at sign (@)
		@ option (vile), Important Command-Line Arguments, Initialization
	
	\@ metacharacter, Extended Regular Expressions
	

	auto indenting, Auto and Smart Indenting–Keyword and Dictionary Word Completion
	
	autocmd command, Autocommands, Autocommands and Groups, A Useful Vim Script Example
	
	autocommands, Autocommands–Some Additional Thoughts About Vim Scripting
	
	autoiconify option (elvis), Options
	
	autoindent method, Auto and Smart Indenting
	
	autosave option, Recovering a Buffer
	
	autowrite option, Recovering a Buffer, Some Useful Options
	
	awk data manipulation language, Beyond ex
	

B
	:b (buffer)
 command,
	
	b (move word) command, Movement by Text Blocks
	
	B (move word) command, Movement by Text Blocks
	
	-b option, Editing Binary Files
	
	\b, \B
 metacharacters, Extended Regular Expressions
	
	b: Vim variable, Variables
	
	background color options, Setting the background option
	
	backquote (`)
		`` (move to mark)
 command, The G (Go To) Command, Marking Your Place
	
	marking characters (vile), Visual Mode
	
	move to mark command, Marking Your Place
	

	backslash (\) (see \ (backslash) metacharacter)
	
	Backspace key
		deleting in insert mode, vi Commands
	
	moving with, Single Movements
	

	backup files, Backups with Vim
	
	backupcopy option, Backups with Vim
	
	backupdir option, Backups with Vim
	
	backupnext option, Backups with Vim
	
	backupskip option, Backups with Vim
	
	backward searching, Movement by Searches
	
	“Bad file number”
 message, Problems Opening Files
	
	“Bad termpcap entry”
 message, Problems Opening Files
	
	:badd command, Buffer Command Synopsis
	
	:ball command, Buffer Command Synopsis
	
	:bd (bdelete)
 command,
	
	:bdelete
 command, Buffer Command Synopsis
	
	beep mode, Modus Operandi
		(see also command mode)
	

	beginning of line context, The cinkeys option
	
	:behave command
 (gvim), Using the Mouse
	
	:bfirst
 command, Buffer Command Synopsis
	
	:bg (hide window) command
 (nvi), Multiwindow Editing
	
	binary data, editing, Arbitrary Length Lines and Binary Data
		elvis editor, Arbitrary Length Lines and Binary Data
	
	nvi editor, Arbitrary Length Lines and Binary Data
	
	vile editor, Arbitrary Length Lines and Binary Data
	

	binary files, editing, Editing Binary Files
	
	binary option (elvis), Arbitrary Length Lines and Binary Data
	
	:bind-key command, The vile Editing Model
	
	black-hole registers, Categories of Features
	
	blank parameter (sessionoptions option), The mksession Command
	
	blinktime option (elvis), Options
	
	block (visual) mode, Visual Mode
		elvis editor, Visual Mode
	
	vile editor, Visual Mode
	

	“Block device
 required” message, Problems Opening Files
	
	“Block special file”
 message, Problems Opening Files
	
	:bmod command, Buffer Command Synopsis
	
	:bnext command, Buffer Command Synopsis
	
	:bNext command, Buffer Command Synopsis
	
	bookmarks, placing, Marking Your Place
	
	Bostic, Keith, Author and History
	
	bottom-line commands, The vi Text Editor
	
	:bprevious
 command, Buffer Command Synopsis
	
	braces ({ })
		\{...}
 metacharacter, Extended Regular Expressions
	
	\{…}
 metacharacter, Extended Regular Expressions
	
	{ (move cursor)
 command, Movement by Text Blocks
	
	} (move cursor)
 command, Movement by Text Blocks
	
	cinkeys options and, The cinkeys option
	
	finding and matching, A Special Search Command
	
	folding and, Folding and Outlining (Outline Mode)
	
	metacharacters, Extended Regular Expressions, Extended Regular Expressions
	

	brackets ([])
		[[,]] (move
 cursor) commands, Movement by Text Blocks
	
	[: :]
 metacharacters, POSIX Bracket Expressions
	
	[. .]
 metacharacters, POSIX Bracket Expressions
	
	[= =]
 metacharacters, POSIX Bracket Expressions
	
	matching, A Special Search Command
	
	metacharacters, Metacharacters Used in Search Patterns
	

	branching undos, Undoing Undos
	
	:browse command, Tag Stacks
	
	bs values (lptype option), Display Modes
	
	Buettner, Kevin, vile: vi Like Emacs
	
	bufdisplay option (elvis), Display Modes
	
	bufdo command, Buffer Commands
	
	BufEnter autocommand, Options During Splits
	
	buffer variables, Buffer Variables
	
	buffers, Opening and Closing Files, Making Use of Buffers
		autowrite and autosave options, Recovering a Buffer
	
	commands, Buffer Commands, Command-Line History and Completion
		for summary, Review of vi Buffer and Marking Commands
	

	copying file contents into, Copying a File into Another File
	
	executing contents of, @-Functions
	
	hidden, Hidden Buffers
	
	hold buffer (metacharacters), Metacharacters Used in Search Patterns, Extended Regular Expressions, Extended Regular Expressions
	
	interaction with windows, Buffers and Their Interaction with Windows–Playing Tag with Windows
	
	multiple windows, editing, Multiple Windows in Vim
	
	multiwindow editing and, Multiwindow Editing
	
	named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
		arbitrarily naming (nvi), Interesting Features
	

	numbered buffers for deletions/yanks, Moving Text, Making Use of Buffers
	
	preserving manually, Recovering a Buffer
	
	recovering after system failure, Recovering a Buffer
	
	renaming (ex), Renaming the Buffer
	
	special, Vim’s Special Buffers
	

	buffers command,
	
	:buffers command, Buffers and Their Interaction with Windows, Buffer Command Synopsis
	
	buffers parameter (sessionoptions
 option), The mksession Command
	
	BufLeave autocommand, Options During Splits
	
	BufNewFile command, Autocommands
	
	BufRead command, Autocommands
	
	BufReadPost command, Autocommands
	
	BufReadPre command, Autocommands
	
	BufWrite command, Autocommands
	
	BufWritePre command, Autocommands
	
	built-in calculator, elvis, Interesting Features
	
	:bunload
 command, Buffer Command Synopsis
	

C
	c (change) command, Simple Edits, Changing Text, Insert Commands,
		cc command, Lines–Lines
	
	cw command, Words–Words
	
	examples of use, Review of Basic vi Commands, More Command Combinations
	
	review examples of, Changing through searching
	

	C (change) command, Lines, Insert Commands
	
	c option
		:s command, Confirming Substitutions
	

	-c option, Advancing to a Specific Place, Command-Line Options
		elvis editor, Important Command-Line Arguments
	
	nvi editor, Important Command-Line Arguments
	
	vile editor, Important Command-Line Arguments
	

	-C option, Command-Line Options
	
	c$ command, Changing and deleting text
	
	C/C++ programming languages
		cmode mode (vile), Major Modes
	
	comments, placing (example), More Examples of Mapping Keys
	

	:calc command
 (elvis), Interesting Features
	
	calculator, elvis, Interesting Features
	
	capitals, changing to lowercase, Changing Case, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	Caps Lock key, Problem Checklist
	
	caret (^)
		cursor movement command, Movement on the current line
	
	metacharacter, Metacharacters Used in Search Patterns
	
	representing CTRL key, Keystrokes, Keystrokes
		(see also CTRL- commands)
	

	within [] metacharacters, Metacharacters Used in Search Patterns
	

	case sensitivity, The vi Text Editor, Opening a File, Problem Checklist, Metacharacters Used in Replacement Strings
		case-insensitive pattern searches, The :set Command
	
	of commands, The vi Text Editor
	
	pattern searching, Some Useful Options
	

	case, converting, Changing Case, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	cc command, Edit-Compile Speedup, Changing and deleting text
	
	ccprg option (elvis), Edit-Compile Speedup
	
	cd command,
	
	cedit option (nvi), Command-Line History and Completion
	
	center command,
	
	change word (cw) command, The vi Text Editor
	
	changing (replacing) text, Simple Edits, Changing Text
		by characters, Characters
	
	globally, Global Replacement
		confirming substitutions, Confirming Substitutions
	
	context sensitivity, Context-Sensitive Replacement
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	substitution tricks, More Substitution Tricks
	

	by lines, Lines–Lines, Substituting text
	
	searching and, Changing through searching
	
	by words, Words–Words
	

	character classes, POSIX Bracket Expressions–POSIX Bracket Expressions
	
	“Character special
 file” message, Problems Opening Files
	
	character strings, Movement by Searches
	
	characters, Review of Basic vi Commands
		(see also lines; text; words)
	
	case conversions, Changing Case, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	deleting, vi Commands, Characters
	
	marking with ` (vile), Visual Mode
	
	matching (see metacharacters)
	
	moving by, Single Movements
	
	replacing (changing) singly, Characters
	
	searching for in lines, Current Line Searches
	
	transposing, Transposing two letters
	

	cindent method, Auto and Smart Indenting
	
	cinkeys cindent option, cindent
	
	cinoptions cindent option, cindent, The cinoptions option
	
	cinwords cindent option, cindent, The cinwords option
	
	class keyword (ctags), The New tags Format
	
	clicking in elvis, Mouse Behavior
	
	-client option
 (elvis), The Basic Window
	
	clipboard
		Windows, gvim in Microsoft Windows
	
	xvile and, Clipboard
	

	clo (close) command,
	
	clones, vi, And These Are My Brothers, Darrell, Darrell, and
 Darrell–A Look Ahead, Editor Comparison Summary
		(see also specific clone)
	
	enhanced tags, Enhanced Tags–Exuberant ctags and Vim
	
	feature summary, Editor Comparison Summary
	
	GUI interfaces, GUI Interfaces
		elvis editor, GUI Interfaces–Options, Syntax Highlighting, Display Modes–Display Modes
	
	vile editor, GUI Interfaces–winvile Basic Appearance and Functionality, GUI Interfaces–winvile Basic Appearance and Functionality, Syntax Highlighting
	

	improvements over vi, Improved Facilities–Mode Indicators
		elvis editor, Improved Editing Facilities–Visual Mode
	
	nvi editor, Improvements for Editing–Left-Right Scrolling
	
	vile editor, Improved Editing Facilities–Visual Mode
	

	multiwindow editing, Multiwindow Editing–Multiwindow Editing
		elvis editor, Multiwindow Editing–Multiwindow Editing
	
	nvi editor, Multiwindow Editing–Multiwindow Editing
	
	vile editor, Multiwindow Editing–Multiwindow Editing
	

	programming assistance, Programming Assistance–Syntax Highlighting
		elvis editor, Programming Assistance–Syntax Highlighting
	
	vile editor, Programming Assistance–Syntax Highlighting
	

	regular expressions, Extended Regular Expressions–Extended Regular Expressions
		elvis editor, Extended Regular Expressions–Extended Regular Expressions
	
	nvi editor, Extended Regular Expressions–Extended Regular Expressions
	
	vile editor, Extended Regular Expressions–Extended Regular Expressions
	
	Vim editor, Extended Regular Expressions–Extended Regular Expressions
	

	set command options (list), Setting Options
	

	:close command
 (elvis), Multiwindow Editing
	
	:close[!] command, Closing and Quitting Windows
	
	cmd command, Conditional Split Commands, Command-Line Options
		windo and bufdo commands, Buffer Commands
	

	cmdheight option, Window Sizing Options
	
	cmode mode (vile), Major Modes
	
	:cnewer command, Compiling and Checking Errors with Vim
	
	:cnext command, Compiling and Checking Errors with Vim
	
	:co (copy) command
 (ex), Editing with ex,
	
	coffee mugs with vi logo, vi for Java Lovers
	
	:colder command, Compiling and Checking Errors with Vim
	
	collating symbols, POSIX Bracket Expressions
	
	colon (:)
		:! commands and, Executing Unix Commands
	
	ex commands and, The vi Text Editor, ex Commands
	
	line-editing mode, Problems Opening Files
	
	meta-information, extracting, Categories of Features
	

	:color command, The colorscheme command
	
	colors
		GUI interfaces, GUI Interfaces
	
	schemes, What’s Your Favorite Color (Scheme)?–Dynamic File Type Configuration Through Scripting
	

	colorscheme command, What’s Your Favorite Color (Scheme)?, Using the strftime() function, Customization, The colorscheme command, Setting the background option
		global variables, using Vim scripts, Tuning a Vim Script with Global Variables
	

	comma (,)
		for line ranges (ex), ex Commands, Defining a Range of Lines
	
	repeat search command, Current Line Searches
	

	command completion, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	command mode, The vi Text Editor, Modus Operandi, vi Commands, Command Mode
		gvim, using the mouse, Using the Mouse
	
	keystroke maps, Using the map Command
		function keys and special keys, Mapping Function Keys
	
	useful examples of, More Examples of Mapping Keys
	

	mode indicators, Mode Indicators
	

	command-line
		history, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	multiwindow initiation from, Multiwindow Initiation from the Command Line (Shell)
	
	options, Options When Starting vi, Startup and Initialization Options, Command-Line Options
		elvis editor, Important Command-Line Arguments–Important Command-Line Arguments
	
	nvi editor, Important Command-Line Arguments–Important Command-Line Arguments
	
	vile editor, Important Command-Line Arguments–Important Command-Line Arguments
	

	syntax, Command-Line Syntax–Review of vi Operations
	

	commands, The vi Text Editor, Problems with vi Commands
		abbreviations of Vim, Abbreviations of Vim Commands and Options
	
	auto, Autocommands
		deleting, Deleting Autocommands–Deleting Autocommands, Deleting Autocommands
	
	groups, Autocommands and Groups
	

	cw (change word), The vi Text Editor
	
	echo, Using the strftime() function
	
	ex, Quitting Without Saving Edits
	
	execute, The execute Command
	
	i (insert), The vi Text Editor
	
	saving, Saving Commands
	
	:w
 command, saving edited files, Problems Saving Files
	
	:w!, overwriting
 files, Problems Saving Files
	
	window (Vim), Window Commands (Vim)
	
	wq, saving edits, Saving and Quitting a File
	

	comment display mode (elvis), Syntax Highlighting
	
	comments
		in ex scripts, Comments in ex Scripts
	
	placing markers around lines
 (example), More Examples of Mapping Keys
	

	compatible option, Categories of Features
	
	compiling program source code, Edit-Compile Speedup
		elvis editor, Edit-Compile Speedup
	
	vile editor, Edit-Compile Speedup
	

	completion commands, Insertion Completion Commands–Some Final Comments on Vim Autocompletion
	
	completion, command-line, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	conditional execution, Conditional Execution
	
	configuration files
		gvim, Starting gvim
	

	:configure command
 (vile), Building xvile
	
	confirming substitutions, Confirming Substitutions
	
	context-sensitive global replacement, Context-Sensitive Replacement
	
	copies of files, working in buffers, Opening and Closing Files
	
	:copy command (ex), Editing with ex
	
	:copy-to-clipboard command
 (xvile), Clipboard
	
	copying files into other files, Copying a File into Another File
	
	copying text, Copying Text
		by lines, Editing with ex
	
	named deletion/yank buffers, Yanking to Named Buffers, Edits Between Files
	
	yank-and-put, Simple Edits
		numbered deletion/yank buffers, Moving Text, Making Use of Buffers
	

	COSE standards, The Session File
	
	countzF fold command, The Fold Commands
	
	:cprevious
 command, Compiling and Checking Errors with Vim
	
	cr values (lptype option), Display Modes
	
	cscope program, Tag Stacks
	
	ctags command (Unix), Using Tags
		Exuberant ctags program, Enhanced Tags–Exuberant ctags and Vim, Tag Stacks, Tag Stacks
	
	tag stacks, Tag Stacks–Exuberant ctags and Vim
		elvis editor, Tag Stacks
	
	nvi editor, Tag Stacks–Tag Stacks
	
	Solaris vi, Using Tags, Solaris vi–Exuberant ctags and Vim
	
	vile editor, Tag Stacks
	

	CTRL- commands
		CTRL-A CTRL-] (next tag; vile), Tag Stacks
	
	CTRL-@, Repeat
	
	CTRL-B, CTRL-F (scrolling), Scrolling the Screen
	
	CTRL-] (find
 tag), Tag Stacks–Exuberant ctags and Vim, Tag Stacks, Tag Stacks, Tag Stacks
	
	CTRL-^ command, Switching Files from vi
	
	CTRL-D, CTRL-U (scrolling), Scrolling the Screen
	
	CTRL-E, CTRL-Y (scrolling), Scrolling the Screen
	
	CTRL-G (display line numbers), Movement by Line Number, Defining a Range of Lines
	
	CTRL-L, CTRL-R (redrawing), Redrawing the Screen
	
	CTRL-T (find tag), Solaris vi, Tag Stacks, Tag Stacks
	
	CTRL-T CTRL-X CTRL-] (next tag;
 vile), Tag Stacks
	
	CTRL-V, Protecting Keys from Interpretation by ex
	
	CTRL-V command (elvis block mode), Visual Mode
	
	CTRL-W commands
		elvis vi-mode window commands, Multiwindow Editing
	
	nvi window cycle commands, Multiwindow Editing
	

	CTRL-X CTRL-R, CTRL-X CTRL-L (scroll;
 vile), Left-Right Scrolling
	
	CTRL-X CTRL-S, CTRL-X CTRL-R (search;
 vile), Incremental Searching
	
	cursors, moving inside windows and, Moving Around Windows (Getting Your Cursor from Here to
 There)
	
	resizing windows, Window Resize Commands
	
	word completions and, Keyword and Dictionary Word Completion
	

	curdir parameter (sessionoptions
 option), The mksession Command
	
	curly braces ({ })
		{ (move cursor)
 command, Movement by Text Blocks
	
	} (move cursor)
 command, Movement by Text Blocks
	
	finding and matching, A Special Search Command
	
	metacharacters, Extended Regular Expressions, Extended Regular Expressions
	

	current file, % for, Calling in New Files
	
	current line (ex)
		. symbol for, Line Addressing Symbols
	
	redefining, Redefining the Current Line Position
	

	cursor, moving, Moving the Cursor, Movement Within a Screen
		commands for, Review of vi Motion Commands
	
	to marks, Marking Your Place
	
	opening files at specific place, Advancing to a Specific Place
	
	by searching for
 patterns, Movement by Searches, Movement by Line Number
	
	by text blocks, Movement by Text Blocks, Movement by Text Blocks
	
	xvile interface, Setting the cursor position and mouse motions
	

	CursorMoved command, Autocommands
	
	CursorMoverI command, Autocommands
	
	customizing editing environment, Customizing vi
	
	cut-and-paste, Simple Edits, Moving Text
		multiple windows in Vim and, Multiple Windows in Vim
	

	cw (change word) command, The vi Text Editor, Changing and deleting text
	
	Cygwin, Completion by dictionary
	

D
	d (delete) command, Simple Edits, Deleting Text
		db, d$, d0 commands, Words
	
	dd command, Lines
	
	de and dE commands, Words
	
	df command, Current Line Searches
	
	dw command, Words
	
	examples of use, Review of Basic vi Commands, More Command Combinations
	
	with named buffers, Copying Text, Yanking to Named Buffers
	
	numbered buffers for, Moving Text, Making Use of Buffers
	
	review examples of, Changing through searching
	

	D (delete) command, Lines
	
	:d (delete) command
 (ex), Editing with ex
	
	-d option, Command-Line Options
	
	-D option, Command-Line Options
	
	d$ command, Changing and deleting text
	
	\d, \D
 metacharacters, Extended Regular Expressions
	
	database, switching items in (example), Switching Items in a Textual Database
	
	date command (Unix), Executing Unix Commands
	
	dav, Editing Files in Other Places
	
	dd (delete line) command, Manual Folding, Changing and deleting text
	
	“default” command
 mode, The vi Text Editor
	
	:delete command (ex), Editing with ex
	
	:delete-other-windows
 command (vile), Multiwindow Editing
	
	:delete-window command
 (vile), Multiwindow Editing
	
	:edit-file command
 (vile), Multiwindow Editing
	
	deleting
		lines, Editing with ex
	
	parentheses (example), More Examples of Mapping Keys
	
	recovering deletions, Recovering Deletions
	
	text, Simple Edits, Deleting Text, Current Line Searches
		by characters, vi Commands, Characters
	
	with ex editor, Search Patterns
	
	by lines, Lines
	
	named buffers for, Copying Text, Yanking to Named Buffers, Edits Between Files
	
	numbered buffers for, Moving Text, Making Use of Buffers
	
	undoing deletions, Problems with deletions
	
	by words, Words
	

	:describe-function
 command (vile), Online Help and Other Documentation
	
	:describe-key
 command (vile), Online Help and Other Documentation
	
	df command, Problems Saving Files, Current Line Searches, Changing and deleting text
	
	dG command, Changing and deleting text
	
	:di (display)
 command
		elvis editor, Display Modes
	
	nvi editor, Multiwindow Editing, Tag Stacks
	

	Dickey, Thomas, vile: vi Like Emacs
	
	dictionary option, Completion by dictionary
	
	diff command, Multiple Windows in Vim, What’s the Difference?
	
	diff method, creating folds, Folding and Outlining (Outline Mode)
	
	digraphs, Digraphs: Non-ASCII Characters
	
	directories, navigating and changing, Navigating and Changing Directories–Backups with Vim
	
	directory buffer, Vim’s Special Buffers
	
	“Directory” message, Problems Opening Files
	
	“Disk quota
 has been reached” message, Problems Saving Files
	
	:display (di)
 command
		elvis editor, Display Modes
	
	nvi editor, Multiwindow Editing, Tag Stacks
	

	display modes, elvis, Syntax Highlighting, Display Modes–Display Modes
	
	:display syntax
 command (elvis), Syntax Highlighting, Display Modes–Display Modes
	
	dL command, Changing and deleting text
	
	dn command, Changing and deleting text
	
	documentation
		elvis editor, Online Help and Other Documentation
	
	nvi editor, Online Help and Other Documentation
	
	vi-related archives (FTP), Amaze Your Friends!
	
	vi-related web sites, vi Web Sites
	
	vile editor, Online Help and Other Documentation
	

	dollar sign ($)
		cursor movement command, Movement Within a Line, Movement on the current line
	
	for last file line
 (ex), Line Addressing Symbols
	
	marking end of change region, Changing Text
	
	metacharacter, Metacharacters Used in Search Patterns
	

	dot (.)
		current line symbol (ex), Line Addressing Symbols
	
	echo command and, Variables
	
	filenames and, Opening a File
	
	meta-information, extracting, Categories of Features
	
	metacharacter, Metacharacters Used in Search Patterns
	
	repeat command, Repeat, Confirming Substitutions
	
	undo/redo (nvi), Infinite Undo
	

	double quote (XXX_DQUOTE) command, Recovering Deletions, Yanking to Named Buffers
	
	dt command, Changing and deleting text
	
	dumb values (lptype option), Display Modes
	
	dw command, Changing and deleting text
	
	d^ command, Changing and deleting text
	
	d} command, Changing and deleting text
	

E
	:e (edit file)
 command (ex), Calling in New Files,
		:e! command, Calling in New Files
	

	e (move cursor) command, Movement by Text Blocks
	
	E (move cursor) command, Movement by Text Blocks
	
	:e command, Accessing Multiple Files
	
	\E
 metacharacter, Metacharacters Used in Replacement Strings
	
	\e
 metacharacter, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	
	:e! ENTER command, Quitting Without Saving Edits
	
	eadirection option, Window Sizing Options
	
	“easy gvim” (MS
 Windows), Graphical Vim (gvim)
	
	echo command, Using the strftime() function
	
	echoing of commands, The vi Text Editor
	
	Eclipse, Vim Enhancements for Programmers
	
	ed line editor, The vi Text Editor
	
	ed text editor, The vi Text Editor
	
	edcompatible option, More Substitution Tricks
	
	:edit command, Buffers and Their Interaction with Windows
	
	:Edit command
 (nvi), Multiwindow Editing
	
	edit commands, Edit Commands
	
	edit-compile speedup, Edit-Compile Speedup
		elvis editor, Edit-Compile Speedup
	
	vile editor, Edit-Compile Speedup
	

	editing, Simple Editing–Review of Basic vi Commands
		clone improvements over vi, Improved Facilities–Mode Indicators, Improvements for Editing–Left-Right Scrolling, Improved Editing Facilities–Visual Mode, Improved Editing Facilities–Visual Mode
	
	customizing editing environment, Customizing vi
	
	ex commands on command line, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	ex editor for, Editing with ex
	
	lists of files, More Examples of Mapping Keys
	
	multiple files, Editing Multiple Files
	
	read-only mode, Read-Only Mode
	
	recovering the buffer, Recovering a Buffer
	
	replacing text (see replacing text)
	
	source code, advice for, Editing Program Source Code
		indentation control, Indentation Control
	
	matching brackets, A Special Search Command
	
	using tags, Using Tags, Enhanced Tags–Exuberant ctags and Vim
	

	transparent for Vim, Categories of Features
	
	using multiple windows, Multiwindow Editing–Multiwindow Editing
		elvis editor, Multiwindow Editing–Multiwindow Editing
	
	nvi editor, Multiwindow Editing–Multiwindow Editing
	
	vile editor, Multiwindow Editing–Multiwindow Editing
	

	vile editing model, The vile Editing Model
	

	else blocks, Conditional Execution
	
	elseif blocks, Conditional Execution
	
	elvis (vi clone), Author and History, Elvis–Sources and Supported Operating Systems
		documentation and online help, Online Help and Other Documentation
	
	extended regular expressions, Extended Regular Expressions–Extended Regular Expressions
	
	feature summary, Editor Comparison Summary
	
	future of, elvis Futures
	
	GUI interfaces for, GUI Interfaces–Options
	
	important command-line arguments, Important Command-Line Arguments–Important Command-Line Arguments
	
	improvements over vi, Improved Editing Facilities–Visual Mode
	
	infinite undo facility, Infinite Undo
	
	initialization of, Initialization
	
	interesting features, Interesting Features–Pre- and Post-Operation Control Files
	
	line length, Arbitrary Length Lines and Binary Data
	
	mode indicators, Mode Indicators
	
	multiwindow editing, Multiwindow Editing–Multiwindow Editing
	
	obtaining source code, Sources and Supported Operating Systems
	
	print management, Display Modes
	
	programming assistance, Programming Assistance–Syntax Highlighting
	
	set command options (list), elvis 2.2 Options
	
	sideways scrolling, Left-Right Scrolling
	
	tag stacks, Tag Stacks
	
	word abbreviations, Word Abbreviation
	

	“elvis ex history”
 buffer, Command-Line History and Completion
	
	elvis.arf file, Display Modes, Pre- and Post-Operation Control Files
	
	elvis.awf file, Pre- and Post-Operation Control Files
	
	elvis.brf file, Arbitrary Length Lines and Binary Data, Pre- and Post-Operation Control Files
	
	elvis.bwf file, Pre- and Post-Operation Control Files
	
	elvis.ini script, Initialization Steps
	
	elvis.msg file, Initialization Steps, Interesting Features
	
	ELVISPATH environment variable (elvis), Initialization Steps
	
	elvispath option (elvis), Initialization Steps
	
	Emacs text editor, The vi Text Editor, Graphical Vim (gvim)
		vi editor versus, Tastes Great, Less Filling
	
	vile editing model, The vile Editing Model
	

	END key, mapping, Mapping Other Special Keys
	
	endfunction statement, Defining Functions
	
	ENTER command, Quitting Without Saving Edits
	
	Enter key
		moving with, Single Movements, Movement by Line
	
	newlines in insert mode, Movement Within a Line
	

	enum keyword (ctags), The New tags Format
	
	epson values (lptype option), Display Modes
	
	equalalways option, Window Sizing Options
	
	equals sign (=)
		:= (identify line) command, Defining a Range of Lines
	
	\=
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	buffers, describing, Buffers and Their Interaction with Windows
	

	equivalence classes, POSIX Bracket Expressions
	
	:er,
 errlist commands (elvis), Edit-Compile Speedup
	
	erasing (see deleting)
	
	error finder, vile, Edit-Compile Speedup
	
	errorformat option, Compiling and Checking Errors with Vim
	
	errors, compiling and checking, Compiling and Checking Errors with Vim–Some Final Thoughts on Vim for Writing Programs
	
	ESC for command mode, vi Commands
	
	ESC key
		command mode, entering, Modus Operandi
	

	/etc/vi.exrc file
 (nvi), Initialization
	
	:eval command
 (elvis), Interesting Features
	
	ex commands, Quitting Without Saving Edits, ex Commands
		combining, Combining ex Commands
	
	editing on command line, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	executing Unix commands, Executing Unix Commands
	
	line addresses, ex Commands, Line Addresses
		ranges of lines, Defining a Range of Lines, Redefining the Current Line Position
	

	line addressing
		redefining current line, Redefining the Current Line Position
	
	relative addressing, Line Addressing Symbols
	
	symbols for, Line Addressing Symbols
	

	opening files and, Problems Opening Files
	
	saving and exiting, Saving and Quitting a File, Saving and Exiting Files
	
	saving files and, Problems Saving Files
	
	tag stacking and, Tag Stacking
	

	ex line editor, The vi Text Editor
	
	ex scripts, Using ex Scripts
	
	ex text editor, The vi Text Editor, Introducing the ex Editor
		basics of, ex Basics
	
	commands, Alphabetical Summary of ex Commands–
	
	editing with, Editing with ex
	
	executing buffers from, Executing Buffers from ex
	
	filtering text with, Filtering text with ex
	
	invoking on multiple files, Looping in a Shell Script
	
	using ex commands in vi, The vi Text Editor
	

	exclamation point (!)
		buffers, interaction with, Buffers and Their Interaction with Windows
	
	cinkeys syntax rules, The cinkeys option
	
	ex commands starting with, Problems Saving Files
	
	mapping keys for insert mode, Mapping Keys for Insert Mode
	
	overriding save warnings, Saving and Exiting Files
	
	for Unix commands, Executing Unix Commands, Filtering text with vi
	

	“Executable” message, Problems Opening Files
	
	execute command, The execute Command
	
	executing text from buffers, @-Functions
	
	EXINIT environment variable, Customizing vi
		elvis editor, Initialization Steps
	
	nvi editor, Initialization
	

	“[Existing file]”
 message, Problems Saving Files
	
	exists() function, The exists() Function
	
	exiting ex (into vi), Problem Checklist
	
	exiting vi, Saving and Quitting a File, Saving and Exiting Files
	
	expr method, creating folds, Folding and Outlining (Outline Mode)
	
	expressions, Expressions
	
	.exrc files, Customizing vi, The .exrc File, Initialization, Example .exrc File
		security concerning (elvis), Interesting Features
	

	exrc option, Alternate Environments, Initialization, Initialization Steps
	
	extended regular expressions, Extended Regular Expressions
		elvis editor, Extended Regular Expressions–Extended Regular Expressions
	
	nvi editor, Extended Regular Expressions–Extended Regular Expressions
	
	vile editor, Extended Regular Expressions–Extended Regular Expressions
	
	Vim editor, Extended Regular Expressions–Extended Regular Expressions
	

	extended tags file format, Enhanced Tags–Exuberant ctags and Vim, Tag Stacks, Tag Stacks
	
	extensions, Extensions
	
	Exuberant ctags program, Enhanced Tags–Exuberant ctags and Vim, Tag Stacks, Tag Stacks
	
	:exusage command
 (nvi), Online Help and Other Documentation
	

F
	:f (file) command,
	
	f (search line) command, Current Line Searches
	
	F (search line) command, Current Line Searches
	
	-f option (elvis), Important Command-Line Arguments
	
	-F option, Important Command-Line Arguments
	
	\f, \F
 metacharacters, Extended Regular Expressions
	
	:fg (uncover window)
 command (nvi), Multiwindow Editing
	
	:Fg (uncover window)
 command (nvi), Multiwindow Editing
	
	“File exists”
 message, Problems Saving Files
	
	“File is read only”
 message, Problems Opening Files, Problems Saving Files
	
	file keyword (ctags), The New tags Format
	
	“File system is full”
 message, Problems Saving Files
	
	“File to load” prompt, The Toolbar
	
	filec option (nvi), Command-Line History and Completion
	
	files
		accessing multiple, Accessing Multiple Files
	
	copying into other files, Copying a File into Another File
	
	current and alternate (% and #), Calling in New Files
	
	deleting, Problems Saving Files
	
	editing (see editing)
	
	editing in other places, Editing Files in Other Places
	
	executing ex scripts on, Using ex Scripts
	
	extensions, Dynamic File Type Configuration Through Scripting
	
	filenames, Opening a File, ex Commands
	
	iterating through lists of, More Examples of Mapping Keys
	
	multiwindow editing and, Multiwindow Initiation from the Command Line (Shell)
	
	opening, Opening a File
		multiple at once, Invoking vi on Multiple Files, Calling in New Files
	
	previous file, Switching Files from vi
	
	read-only mode, Read-Only Mode
	
	at specific place, Advancing to a Specific Place
	

	problems opening, Problems Opening Files
	
	quitting (see quitting vi)
	
	reading as vi environments, Alternate Environments
	
	renaming buffer (ex), Renaming the Buffer
	
	saving, Problems Saving Files (see saving edits)
	
	writing (see writing the buffer)
	

	:files command, Buffers and Their Interaction with Windows, Buffer Command Synopsis
	
	FileType command, Autocommands
	
	filtering text through Unix commands, Filtering Text Through a Command
	
	:find-file command
 (vile), Multiwindow Editing
	
	“First address
 exceeds second” message, Redefining the Current Line Position
	
	first line of file
		moving to, Movement Within a Screen
	

	firstx, firsty option (elvis), Options
	
	fold command,
	
	foldc command,
	
	foldcolumn margin, Manual Folding
	
	foldenable, setting, A Few Words About the Other Fold Methods
	
	folding, Folding and Outlining (Outline Mode)
		manual, Manual Folding–Outlining
	

	foldlevel command, Outlining
	
	foldo command,
	
	folds parameter (sessionoptions option), The mksession Command
	
	fonts (see GUI interfaces)
	
	for loops, Looping in a Shell Script
	
	formatting codes, The vi Text Editor
	
	Fox, Paul, vile: vi Like Emacs
	
	Fred Fish disk 591, Author and History
	
	FreeBSD, Completion by dictionary
	
	FTP, Editing Files in Other Places
		archives on vi, Amaze Your Friends!
	

	function display mode (elvis), Syntax Highlighting
	
	function keys, mapping, Mapping Function Keys
	
	function keyword (ctags), The New tags Format
	
	function statement, Defining Functions
	
	functions
		defining, Defining Functions
	
	exists(), The exists() Function–The exists() Function
	
	internal, Internal Functions–Internal Functions, Internal Functions
	
	strftime, Using the strftime() function
	

G
	:g (global
 replacement) command (ex), Context-Sensitive Replacement,
		collecting lines with (example), Collecting Lines
	
	pattern-matching examples, Pattern-Matching Examples
	
	repeating commands with (example), Using :g to Repeat a Command
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	

	g (global) command
 (ex), Global Searches
	
	G (go to) command, The G (Go To) Command
	
	g option (:s command), Global Replacement
	
	-g option, GUI Options and Command Synopsis
		gvim, Starting gvim
	

	-G option (elvis), Important Command-Line Arguments
	
	g: Vim variable, Variables
	
	gg option, Line numbering
	
	gI command, Insert Commands
	
	gJ command, Copying and moving
	
	global replacement, Global Replacement
		confirming substitutions, Confirming Substitutions
	
	context sensitivity, Context-Sensitive Replacement
	
	examples of, Pattern-Matching Examples
	
	global pattern-matching rules, Pattern-Matching Rules
	
	pattern-matching rules
		replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	

	global searches (ex), Global Searches
	
	globals parameter (sessionoptions
 option), The mksession Command
	
	glossary
		converting to troff (example), A Complex Mapping Example
	

	GNU Emacs text editor, The vi Text Editor
	
	gp command, Changing and deleting text
	
	gP command, Changing and deleting text
	
	gqap command, Changing and deleting text
	
	Graphical User Interfaces (see GUI interfaces)
	
	Graphical Vim (see gvim)
	
	groups (syntax highlighting), Customization
	
	:gui command, GUI Options and Command Synopsis
		elvis, The Toolbar
	

	GUI interfaces, Categories of Features
		elvis editor, GUI Interfaces–Options
		display modes, Syntax Highlighting, Display Modes–Display Modes
	

	gvim, Graphical Vim (gvim)–GUI Options and Command Synopsis
	
	vi clones, GUI Interfaces
	
	vile editor, GUI Interfaces–Adding menus
	

	guicursor option, GUI Options and Command Synopsis
	
	guifont option, GUI Options and Command Synopsis
	
	guifontset option, GUI Options and Command Synopsis
	
	guifontwide option, GUI Options and Command Synopsis
	
	guiheadroom option, GUI Options and Command Synopsis
	
	guioptions option, Scrollbars, GUI Options and Command Synopsis
	
	guitablabel option, GUI Options and Command Synopsis
	
	guitabtooltip option, GUI Options and Command Synopsis
	
	guw command, Changing and deleting text
	
	gUw command, Changing and deleting text
	
	gvim, Moving Around Windows (Getting Your Cursor from Here to
 There), Graphical Vim (gvim)
		menus, Useful Menus
	
	mouse behavior and, Using the Mouse–Useful Menus
	
	resizing windows and, Resizing Windows
	
	starting, Starting gvim
	
	tabbed editing, Tabbed Editing
	

	$GVIMINIT
 environment variable, Starting gvim
	
	.gvimrc startup
 file, Starting gvim
		arrays and, Arrays
	
	colorscheme command and, What’s Your Favorite Color (Scheme)?
	
	functions, defining, Defining Functions
	

	gzip utility, A Look Ahead
	
	g~w command, Changing and deleting text
	

H
	H (home) command, Movement Within a Screen
	
	h (move cursor) command, Single Movements, Movement on the current line
	
	-h option
		vile editor, Important Command-Line Arguments
	

	h status flag, Buffers and Their Interaction with Windows
	
	Haley, Chuck, Author and History
	
	hash mark (see pound sign (#))
	
	help
		elvis editor, Online Help and Other Documentation
	
	nvi editor, Online Help and Other Documentation
	
	vile editor, Online Help and Other Documentation
	

	help buffer, Vim’s Special Buffers
	
	:help command, Buffers and Their Interaction with Windows
	
	:help (:h) command
 (vile), Online Help and Other Documentation
	
	--help option, Multiwindow Editing Inside Vim
	
	help parameter (sessionoptions option), The mksession Command
	
	here documents, Here Documents
	
	hex display mode (elvis), Arbitrary Length Lines and Binary Data, Display Modes
	
	hid (hide) command,
	
	hidden buffers, Hidden Buffers
	
	Hiebert, Darren, Exuberant ctags
	
	highlight command, The highlight command
	
	highlight option, Customization
	
	:historical-buffer
 command (vile), Multiwindow Editing
	
	[History] buffer
 (vile), Command-Line History and Completion
	
	history, command-line, Command-Line History and Completion
		elvis editor, Command-Line History and Completion
	
	nvi editor, Command-Line History and Completion
	
	vile editor, Command-Line History and Completion
	

	hold buffer, Metacharacters Used in Search Patterns, Extended Regular Expressions, Extended Regular Expressions
	
	home (see first line of file)
	
	HOME key, mapping, Mapping Other Special Keys
	
	$HOME/.nexrc file
 (nvi), Initialization
	
	horizontal scrolling, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	horizontally splitting windows, Multiwindow Initiation from the Command Line (Shell)
	
	horizscroll option, Left-Right Scrolling
	
	Horton, Mark, Author and History
	
	hp values (lptype option), Display Modes
	
	HTML, HTML Your Text
	
	html display mode (elvis), Tag Stacks, Display Modes–Display Modes
	
	hyphen (-)
		buffers, describing, Buffers and Their Interaction with Windows
	
	manual folding and, Manual Folding
	
	move cursor command, Single Movements, Movement by Line
	
	for previous file lines
 (ex), Line Addressing Symbols
	

I
	i (insert) command, The vi Text Editor, vi Commands, Insert Commands,
	
	I (insert) command, More Ways to Insert Text, Insert Commands
	
	i flag (gvim mouse option), Using the Mouse
	
	-i option, Command-Line Options
		elvis editor, Important Command-Line Arguments
	

	\i, \I
 metacharacters, Extended Regular Expressions
	
	ibm values (lptype option), Display Modes
	
	ic option, Metacharacters Used in Replacement Strings, The :set Command
	
	IDEs (Integrated Development
 Environments), Categories of Features, Vim Enhancements for Programmers
	
	if...then...else block, Conditional Execution, Arrays
	
	ignorecase option, Some Useful Options
	
	include files (C), Completion by keyword in current file and included
 files
	
	:incremental-search command
 (vile), Incremental Searching
	
	incremental searching, Incremental Searching
		nvi editor, Incremental Searching
	
	vile editor, Incremental Searching
	

	incsearch option
		elvis editor, Incremental Searching
	
	Vim editor, Incremental Searching
	

	indent method, creating folds, Folding and Outlining (Outline Mode)
	
	indentation, Indentation Control
	
	indentexpr method, Auto and Smart Indenting
	
	indenting, Auto and Smart Indenting–Keyword and Dictionary Word Completion
	
	infinite undo facility, Infinite Undo
		elvis editor, Infinite Undo
	
	nvi editor, Infinite Undo
	
	vile editor, Infinite Undo
	

	initialization
		elvis editor, Initialization
	
	nvi editor, Initialization
	
	vile editor, Initialization
	

	initialization for Vim, Categories of Features
	
	inputtab option (elvis), Command-Line History and Completion
	
	insert (i) command, The vi Text Editor,
	
	insert commands, Insert Commands
	
	insert mode, The vi Text Editor, Modus Operandi, Insert Mode
		gvim, using the mouse, Using the Mouse
	
	mapping keys for, Mapping Keys for Insert Mode
	
	mode indicators, Mode Indicators
	
	word abbreviations, Word Abbreviation
	

	inserting text, More Ways to Insert Text
		a (append) command, Simple Edits, Appending Text
	
	handling long insertions, Repeat, More Examples of Mapping Keys, Arbitrary Length Lines and Binary Data
		elvis editor, Arbitrary Length Lines and Binary Data
	
	nvi editor, Arbitrary Length Lines and Binary Data
	
	vile editor, Arbitrary Length Lines and Binary Data
	

	in insert mode, vi Commands
	
	repeating insert with CTRL-@, Repeat
	

	insertion completion command, Insertion Completion Commands–Some Final Comments on Vim Autocompletion
	
	insertion-completion capabilities, Keyword and Dictionary Word Completion
	
	Integrated Development Environments
 (IDEs), Categories of Features, Vim Enhancements for Programmers
	
	interfaces for vi clones, GUI Interfaces
		elvis editor, GUI Interfaces–Options
		display modes, Syntax Highlighting, Display Modes–Display Modes
	

	vile editor, GUI Interfaces–Adding menus
	

	internal functions, Internal Functions
	
	internationalization support
		elvis editor, Interesting Features
	
	nvi editor, Interesting Features
	

	Internet, vi and, vi and the Internet
	
	invoking vi
		command-line options, Options When Starting vi
	
	on multiple files, Invoking vi on Multiple Files
	

	isfname option (Vim), Extended Regular Expressions
	
	isident option (Vim), Extended Regular Expressions, Extended Regular Expressions
	
	iskeyword option (Vim), Extended Regular Expressions, Completion by keyword in file
	
	isprint option (Vim), Extended Regular Expressions
	

J
	J (join) command, Joining Two Lines with J, Copying and moving
	
	j (move cursor) command, Single Movements, Movement by Line
	
	joining lines, Joining Two Lines with J
	
	Joy, Bill, Author and History
	
	ju (jump) command,
	

K
	k (move cursor) command, Single Movements, Movement by Line
	
	\k, \K
 metacharacters, Extended Regular Expressions
	
	keystrokes, remembering with :map, Using the map Command
		function keys and special keys, Mapping Function Keys
	
	useful examples of, More Examples of Mapping Keys
	

	keyword completion, Categories of Features, Keyword and Dictionary Word Completion–Tag Stacking
	
	keyword display mode (elvis), Syntax Highlighting
	
	kill ring (see deleting text, buffers for)
	
	kind keyword (ctags), The New tags Format
	
	Kirkendall, Steve, Elvis
	

L
	L (last line) command, Movement Within a Screen
	
	l (move cursor) command, Single Movements, Movement on the current line
	
	\l
 metacharacter, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	\L
 metacharacter, Metacharacters Used in Replacement Strings
	
	-l option, Command-Line Options
	
	-L option, Command-Line Options
	
	l: Vim variable, Variables
	
	:last command (elvis,
 Vim), Using the Argument List
	
	last line of file
		$ symbol for (ex), Line Addressing Symbols
	
	moving to, Movement Within a Screen
	

	LaTeX formatter, The vi Text Editor
	
	left/right scrolling, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	leftright option (nvi), Left-Right Scrolling, Left-Right Scrolling
	
	:let command, The exists() Function
	
	line editors, The vi Text Editor, The vi Text Editor
	
	line numbers, Movement Within a Line
		displaying, Movement by Line Number, Defining a Range of Lines
	
	in ex commands, ex Commands, Line Addresses
		ranges of lines, Defining a Range of Lines, Redefining the Current Line Position
	
	redefining current line, Redefining the Current Line Position
	
	relative addressing, Line Addressing Symbols
	
	symbols for, Line Addressing Symbols
	

	moving by, Movement by Line Number
	
	opening files at specific, Advancing to a Specific Place
	

	line-editing mode, Problems Opening Files
	
	lines, Review of Basic vi Commands
		(see also characters; text; words)
	
	case conversions, Changing Case
	
	collecting with :g command, Collecting Lines
	
	deleting by, Lines
		undoing deletions, Problems with deletions
	

	ex commands for, Editing with ex
	
	joining, Joining Two Lines with J
	
	length limitations, More Examples of Mapping Keys, Arbitrary Length Lines and Binary Data
		elvis editor, Arbitrary Length Lines and Binary Data
	
	nvi editor, Arbitrary Length Lines and Binary Data
	
	vile editor, Arbitrary Length Lines and Binary Data
	

	marking with ' (vile), Visual Mode
	
	moving by, Movement Within a Line, Movement by Line
	
	moving to specific, Movement Within a Screen, Movement by Line Number
	
	moving within, Movement Within a Line
	
	opening files at specific, Advancing to a Specific Place
	
	placing C/C++ comments around
 (example), More Examples of Mapping Keys
	
	printing, ex Commands
	
	replacing (changing), Changing Text, Lines–Lines, Substituting text
	
	searching within, Current Line Searches
	
	to start/end of (see words)
	
	visible on screen, option for, The :set Command
	
	yanking, Copying Text
	

	linewrap option (vile), Left-Right Scrolling
	
	Linux, getting Vim for, Getting Vim for Unix and GNU/Linux–Getting Vim for Windows Environments
	
	:loadview command, Folding and Outlining (Outline Mode)
	
	local .exrc files, Alternate Environments, Initialization
	
	localoptions parameter (sessionoptions
 option), The mksession Command
	
	long insertions, Repeat, More Examples of Mapping Keys, Arbitrary Length Lines and Binary Data
		elvis editor, Arbitrary Length Lines and Binary Data
	
	nvi editor, Arbitrary Length Lines and Binary Data
	
	vile editor, Arbitrary Length Lines and Binary Data
	

	loops in shell scripts, Looping in a Shell Script
	
	lowercase, converting to uppercase, Changing Case, Metacharacters Used in Replacement Strings
	
	lpc, lpcrlf options (elvis), Display Modes
	
	lpcolor option (elvis), Display Modes
	
	lpcolumns option (elvis), Display Modes
	
	lpcontrast option (elvis), Display Modes
	
	lpconvert option (elvis), Display Modes
	
	lpff, lpformfeed options (elvis), Display Modes
	
	lplines option (elvis), Display Modes
	
	lpo, lpout options (elvis), Display Modes
	
	lpopt, lpoptions options (elvis), Display Modes
	
	:lpr command
 (elvis), Display Modes
	
	lprows option (elvis), Display Modes
	
	lptype option (elvis), Display Modes
	
	lpw, lpwrap options (elvis), Display Modes
	
	:ls command, Buffers and Their Interaction with Windows
		buffers, using, Buffer Command Synopsis
	

M
	m (mark place) command, Marking Your Place
	
	M (middle line) command, Movement Within a Screen
	
	:m (move) command
 (ex), Editing with ex
	
	-m option, Command-Line Options
	
	-M option, Command-Line Options
	
	Mac OS X, installing Vim, Where to Get Vim
	
	macros, Macros
	
	magic option, Some Useful Options
	
	major modes, vile, Major Modes
	
	Make button (elvis), The Toolbar
	
	:make command
 (elvis), The Toolbar, Edit-Compile Speedup
	
	make program, Compiling and Checking Errors with Vim
	
	makeprg option, Compiling and Checking Errors with Vim
		elvis editor, Edit-Compile Speedup
	

	man display mode (elvis), Display Modes–Display Modes
	
	manual folding, Manual Folding–Outlining
	
	manual method, creating folds, Folding and Outlining (Outline Mode)
	
	:map command (ex), Using the map Command,
		commands in .exrc files, The .exrc File
	
	useful examples of, More Examples of Mapping Keys
	

	maps, Using the map Command
		function keys and special keys, Mapping Function Keys
	
	for insert mode, Mapping Keys for Insert Mode
	
	named buffer contents as, @-Functions
	
	useful examples of, More Examples of Mapping Keys
	

	margins
		repeating long insertions, Repeat
	
	setting, Movement Within a Line
	

	marker method, creating folds, Folding and Outlining (Outline Mode)
	
	marking your place, Marking Your Place
	
	marks (vile visual mode), Visual Mode
	
	matching brackets, A Special Search Command
	
	:menu command, Basic menu customization, GUI Options and Command Synopsis
		toolbars, Toolbars
	

	menu support for xvile, Adding menus
	
	menus, using gvim, Useful Menus, Menus–Toolbars
		customizing, More menu customization
	

	meta-information, Categories of Features
	
	metacharacters, Pattern-Matching Rules
		extended regular expressions, Extended Regular Expressions–Extended Regular Expressions
		elvis editor, Extended Regular Expressions–Extended Regular Expressions
	
	nvi editor, Extended Regular Expressions–Extended Regular Expressions
	
	vile editor, Extended Regular Expressions–Extended Regular Expressions
	
	Vim editor, Extended Regular Expressions–Extended Regular Expressions
	

	Microsoft Windows (see MS Windows)
	
	middle line, moving to, Movement Within a Screen
	
	mini-hilite option (vile), Command-Line History and Completion
	
	minus sign (see hyphen)
	
	mksession command, The mksession Command
	
	:mkview command, Folding and Outlining (Outline Mode)
	
	mode indicators (vi clones), Mode Indicators
	
	:modeline-format
 command (vile), Miscellaneous Small Features
	
	modeline option, Editing Binary Files
	
	modes, Modus Operandi
	
	Moolenaar, Bram, Vim (vi Improved): An Introduction, vi Quotes
	
	Morgan, Clark, vile: vi Like Emacs
	
	Mortice Kern Systems, Editing Program Source Code
	
	mouse behavior
		elvis editor, Mouse Behavior
	
	gvim, Using the Mouse–Useful Menus
	

	:move command (ex), Editing with ex
	
	:move-next-window-down
 command (vile), Multiwindow Editing
	
	:move-next-window-up
 command (vile), Multiwindow Editing
	
	:move-window-left
 command (vile), Multiwindow Editing
	
	:move-window-right
 command (vile), Multiwindow Editing
	
	movement commands, Movement Commands
	
	moving
		among multiple files, Invoking vi on Multiple Files
	
	lines, Editing with ex
	
	switching database items (example), Switching Items in a Textual Database
	
	text (delete-and-put), Simple Edits
		numbered deletion/yank buffers, Moving Text, Making Use of Buffers
	

	text blocks by patterns, Block Move by Patterns
	

	moving the cursor, Moving the Cursor, Movement Within a Screen
		commands for, Review of vi Motion Commands
	
	to marks, Marking Your Place
	
	opening files at specific place, Advancing to a Specific Place
	
	by searching for
 patterns, Movement by Searches, Movement by Line Number
	
	by text blocks, Movement by Text Blocks, Movement by Text Blocks
	
	xvile interface, Setting the cursor position and mouse motions
	

	MS Windows, using gvim, Graphical Vim (gvim), gvim in Microsoft Windows
	
	mugs with vi logo, vi for Java Lovers
	
	multiwindow editing, Multiwindow Editing–Multiwindow Editing
		elvis editor, Multiwindow Editing–Multiwindow Editing
	
	initiation, Initiating Multiwindow Editing–Opening Windows
	
	nvi editor, Multiwindow Editing–Multiwindow Editing
	
	vile editor, Multiwindow Editing–Multiwindow Editing
	
	Vim editor, Multiple Windows in Vim–Summary
	

N
	:n (next file)
 command (ex), Invoking vi on Multiple Files
	
	n (search again) command, Repeating Searches, Confirming Substitutions
	
	N (search again) command, Repeating Searches
	
	n flag (mouse option), Using the Mouse
	
	\n metacharacter, Extended Regular Expressions
	
	-N option, Command-Line Options
		vile editor, Important Command-Line Arguments
	

	-n option, Command-Line Options
	
	named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
		arbitrarily naming (nvi), Interesting Features
	
	executing contents of, @-Functions
	

	nested folds, Folding and Outlining (Outline Mode)
	
	:new command, Options During Splits, Window Commands (Vim),
		elvis, Multiwindow Editing
	

	“[new file]”
 message, Problems Opening Files
	
	newline characters, Movement Within a Line, Arbitrary Length Lines and Binary Data
	
	NEXINIT environment variable, Initialization
	
	.nexrc file (nvi), Initialization
	
	:Next command
 (nvi), Multiwindow Editing
	
	:next-tag command
 (vile), Tag Stacks
	
	:next-window command
 (vile), Multiwindow Editing
	
	:no (:normal)
 command (elvis), Display Modes, Display Modes
	
	“No Toolkit” vile interface, GUI Interfaces
	
	“No write since
 last change” message, Problems Opening Files, Saving and Exiting Files
	
	noexpandtab option, Editing Binary Files
	
	noh command,
	
	noignorecase option, Some Useful Options
	
	nolinewrap option (vile), Left-Right Scrolling
	
	nomagic option, Some Useful Options
	
	non-ASCII characters, Digraphs: Non-ASCII Characters
	
	“Non-ascii file”
 message, Problems Opening Files
	
	nonu (nonumber) option, Defining a Range of Lines
	
	--noplugin
 option, Command-Line Options
	
	:normal (:no)
 command (elvis), Display Modes, Display Modes
	
	normal display mode (elvis), Display Modes
	
	normal mode (gvim), Using the Mouse
	
	“Not a typewriter”
 message, Problems Opening Files
	
	notagstack option (elvis), Tag Stacks
	
	nowrap option, What’s My Line (Size)?
		elvis editor, Left-Right Scrolling
	

	nowrapscan option, Repeating Searches, Some Useful Options
	
	nroff formatting package, The vi Text Editor
	
	nu option, Movement Within a Line, Movement by Line Number,
	
	num command, Changing and deleting text
	
	numbered deletions/yanks buffers, Moving Text, Making Use of Buffers
	
	numbers for lines (see line numbers)
	
	numeric arguments for commands, Numeric Arguments, Numeric Arguments for Insert Commands
	
	nvi (vi clone), nvi: New vi–Sources and Supported Operating Systems
		documentation and online help, Online Help and Other Documentation
	
	extended regular expressions, Extended Regular Expressions, Extended Regular Expressions–Extended Regular Expressions
	
	feature summary, Editor Comparison Summary
	
	important command-line arguments, Important Command-Line Arguments–Important Command-Line Arguments
	
	improvements over vi, Improvements for Editing–Left-Right Scrolling
	
	infinite undo facility, Infinite Undo
	
	initialization of, Initialization
	
	interesting features, Interesting Features
	
	line length, Arbitrary Length Lines and Binary Data
	
	mode indicators, Mode Indicators
	
	multiwindow editing, Multiwindow Editing–Multiwindow Editing
	
	obtaining source code, Sources and Supported Operating Systems
	
	set command options (list), nvi 1.79 Options
	
	sideways scrolling, Left-Right Scrolling
	
	tag stacks, Tag Stacks–Tag Stacks
	
	word abbreviations, Word Abbreviation
	

O
	o (open line) command, More Ways to Insert Text, Insert Commands
	
	O (open line) command, More Ways to Insert Text, Insert Commands
	
	-o option, Command-Line Options
		elvis editor, Important Command-Line Arguments
	

	-O option, Command-Line Options
	
	obtaining source code
		elvis editor, Sources and Supported Operating Systems
	
	nvi editor, Sources and Supported Operating Systems
	
	vile editor, Sources and Supported Operating Systems
	

	“one line” command, Manual Folding
	
	online help
		elvis editor, Online Help and Other Documentation
	
	nvi editor, Online Help and Other Documentation
	
	vi tutorial, Online vi Tutorial
	
	vile editor, Online Help and Other Documentation
	

	open mode (elvis), Interesting Features
	
	“[open mode]” message, Problems Opening Files
	
	opening files
		multiple files at once, Invoking vi on Multiple Files, Calling in New Files
	
	previous file, Switching Files from vi
	
	read-only mode, Read-Only Mode
	
	at specific place, Advancing to a Specific Place
	

	options parameter (sessionoptions
 option), The mksession Command
	
	options, set command, The :set Command
		(see also :set command)
	
	list, Setting Options
	
	viewing current, The :set Command
	

	options, vi command, Options When Starting vi
	
	other display mode (elvis), Syntax Highlighting
	
	outline mode, Folding and Outlining (Outline Mode)–Auto and Smart Indenting, Outlining
	
	output (Unix), reading into files, Executing Unix Commands
	
	overstrike mode, Substituting text
	

P
	:p (print) command
 (ex), ex Commands,
	
	p (put) command, Simple Edits, Problems with deletions, Moving Text
		with named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
	

	P (put) command, Moving Text
		with named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
	

	:p (put) command
 (ex), Edits Between Files
	
	\p, \P
 metacharacters, Extended Regular Expressions, Extended Regular Expressions
	
	PAGE UP, PAGE DOWN keys, mapping, Mapping Other Special Keys
	
	pana values (lptype option), Display Modes
	
	paragraphs
		delimiters for, Movement by Text Blocks
	
	moving by, Movement by Text Blocks
	

	parentheses ()
		((move cursor) command, Movement by Text Blocks
	
) (move cursor) command, Movement by Text Blocks
	
	\(...\)
 metacharacters, Metacharacters Used in Search Patterns, Extended Regular Expressions
	
	\(…\)
 metacharacters, Extended Regular Expressions
	
	finding and removing, More Examples of Mapping Keys
	
	as grouping
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	matching, A Special Search Command
	

	parts of files, saving, Saving Part of a File
	
	:paste-to-clipboard
 command (xvile), Clipboard
	
	PATH environment variable, installing Vim, Where to Get Vim
	
	“Pattern not found”
 message, Movement by Searches
	
	pattern searching, Movement by Searches
		configuration options for, Some Useful Options
	
	ex commands for, Search Patterns, Global Searches
	
	global pattern-matching rules, Pattern-Matching Rules
		examples, Pattern-Matching Examples
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	

	incremental searching (vi clones), Incremental Searching
		nvi editor, Incremental Searching
	
	vile editor, Incremental Searching
	

	making case-insensitive, The :set Command
	
	matching brackets, A Special Search Command
	
	opening files at specific place, Advancing to a Specific Place
	
	replacing text and (see replacing text)
	
	within lines, Current Line Searches
	
	wrapping searches, Movement by Searches, Repeating Searches
	

	percent sign (%)
		buffers, describing, Buffers and Their Interaction with Windows
	
	for current
 filename, Calling in New Files
	
	every line symbol (ex), Global Replacement
	
	matching brackets, A Special Search Command
	
	meta-information, extracting, Categories of Features
	
	representing every line (ex), Line Addressing Symbols
	

	period (.) (see dot)
		current line symbol (ex), Line Addressing Symbols
	
	metacharacter, Metacharacters Used in Search Patterns
	
	repeat command, Repeat, Confirming Substitutions
	

	“Permission denied”
 message, Problems Opening Files, Problems Saving Files
	
	pin-tagstack option (vile), Tag Stacks
	
	pipe (|) (see vertical bar)
	
	piping into vile, Miscellaneous Small Features
	
	place marking, Marking Your Place
	
	plug-ins for Vim, Categories of Features
	
	plus sign (+), Command-Line Options
		\+
 metacharacter, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	buffers, describing, Buffers and Their Interaction with Windows
	
	metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	move cursor command, Single Movements, Movement by Line, Movement by Line
	
	for next file lines
 (ex), Line Addressing Symbols
	
	running commands when starting vi, Advancing to a Specific Place
	

	:po command
 (Solaris vi), Solaris vi
	
	:pop (:po)
 command
		elvis editor, Tag Stacks
	
	vile editor, Tag Stacks
	

	:position-window command
 (vile), Multiwindow Editing
	
	POSIX standards, Compare and Contrast with vi
	
	post-read, post-write files (elvis), Initialization Steps, Pre- and Post-Operation Control Files
	
	postprocessing (Vim), Categories of Features
	
	pound sign (#)
		for alternate
 filename, Calling in New Files
	
	buffers, describing, Buffers and Their Interaction with Windows
	
	meta-information, extracting, Categories of Features
	
	show line numbers command, Defining a Range of Lines
	

	:pre command,
		ex, Problems Saving Files, Recovering a Buffer
	

	pre-read, pre-write files (elvis), Initialization Steps, Pre- and Post-Operation Control Files
	
	prep display mode (elvis), Syntax Highlighting
	
	prev command,
	
	:Previous command
 (nvi), Multiwindow Editing
	
	previous file, switching to, Switching Files from vi
	
	:previous-window command
 (vile), Multiwindow Editing
	
	printing
		elvis print management, Display Modes
	
	lines, ex Commands
	

	procedure language, vile, The Procedure Language
	
	programming assistance, Programming Assistance–Syntax Highlighting, Vim Enhancements for Programmers–Some Final Thoughts on Vim for Writing Programs
		edit-compile speedup, Edit-Compile Speedup
		elvis editor, Edit-Compile Speedup
	
	vile editor, Edit-Compile Speedup
	

	elvis editor, Programming Assistance–Syntax Highlighting
	
	source code editing, Editing Program Source Code
		indentation control, Indentation Control
	
	matching brackets, A Special Search Command
	
	using tags, Using Tags
	

	syntax highlighting, Syntax Highlighting
		elvis display modes, Syntax Highlighting, Display Modes–Display Modes
	
	vile editor, Syntax Highlighting
	

	using tags, Enhanced Tags–Exuberant ctags and Vim
	
	vile editor, Programming Assistance–Syntax Highlighting
	
	Vim editor, Categories of Features
	

	prompt line, Opening a File
	
	ps, ps2 values (lptype option), Display Modes
	
	:pu (put) command,
	
	putting text, Simple Edits
		deleting and (cut-and-paste), Moving Text
	
	from named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
	
	yanking and (copy-and-paste), Copying Text
	

Q
	:q (quit) command
 (ex), Saving and Quitting a File, Saving and Exiting Files
		:q! command, Saving and Exiting Files
	

	Q command, Problem Checklist
	
	:q (quoted motion) command
 (vile), Visual Mode
	
	:q! command, Quitting Without Saving Edits, Command-Line Options
		quitting, Problems Opening Files
	

	qa command,
	
	:qall command
 (elvis), Multiwindow Editing
	
	question mark (?)
		\?
 metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	search command, The vi Text Editor, Movement by Searches
	

	quickfix buffer, Vim’s Special Buffers
	
	Quickfix List window, Compiling and Checking Errors with Vim
	
	quipty option, GUI Options and Command Synopsis
	
	Quit button (elvis), The Toolbar
	
	:quit command, Closing and Quitting Windows
	
	quitting vi, Saving and Exiting Files
	
	XXX_DQUOTE (yank from buffer)
 command, Recovering Deletions, Yanking to Named Buffers
	
	quote (XXX_DQUOTE) command, Recovering Deletions, Yanking to Named Buffers
	
	quoted motion (q) command (vile), Visual Mode
	
	quotes about vi, vi Quotes
	

R
	:r (read) command
 (ex), Copying a File into Another File,
	
	r (replace character) command, Characters, Numeric Arguments for Insert Commands
	
	R (replace character) command, Substituting text, More Ways to Insert Text, Insert Commands
	
	\r metacharacter, Extended Regular Expressions
	
	-R option, Read-Only Mode, Recovering a Buffer, Command-Line Options
		vile editor, Important Command-Line Arguments
	

	-r option, Recovering a Buffer
		elvis editor, Important Command-Line Arguments
	

	-R option
		nvi editor, Important Command-Line Arguments
	

	range of lines, Defining a Range of Lines, Redefining the Current Line Position
	
	rcp (remote copy), Editing Files in Other Places
	
	:read command (ex), Copying a File into Another File
		reading Unix command output, Executing Unix Commands
	

	read-hook option (vile), The Procedure Language
	
	“Read Only” files, Problems Opening Files
	
	“[Read only]”
 message, Problems Opening Files
	
	read-only mode, Read-Only Mode
	
	read-only registers (Vim), Categories of Features
	
	rec command,
	
	recovering deletions, Problems with deletions, Recovering Deletions
	
	recovering the buffer, Recovering a Buffer
	
	red command,
	
	redrawing screen, Redrawing the Screen
	
	reformatting text (vile), Miscellaneous Small Features
	
	regular expressions, Pattern-Matching Rules, Extended Regular Expressions–Extended Regular Expressions
		elvis editor, Extended Regular Expressions–Extended Regular Expressions
	
	metacharacters
		in replacement strings, Metacharacters Used in Replacement Strings
	
	in search patterns, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	

	nvi editor, Extended Regular Expressions–Extended Regular Expressions
	
	pattern-matching examples, Pattern-Matching Examples
	
	vile editor, Extended Regular Expressions–Extended Regular Expressions
	
	Vim editor, Extended Regular Expressions–Extended Regular Expressions
	

	relative line addressing (ex), Line Addressing Symbols
	
	relative pathnames, Opening a File
	
	renaming buffer (ex), Renaming the Buffer
	
	repeating commands, Repeat–Repeat
		:g command for
 (example), Using :g to Repeat a Command
	
	global substitutions, More Substitution Tricks
	
	pattern searches, Repeating Searches, Current Line Searches
	
	searching numbered buffers, Recovering Deletions
	

	replacing text, Simple Edits, Changing Text
		by characters, Characters
	
	globally, Global Replacement
		confirming substitutions, Confirming Substitutions
	
	context sensitivity, Context-Sensitive Replacement
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	substitution tricks, More Substitution Tricks
	

	by lines, Lines–Lines, Substituting text
	
	searching and, Changing through searching
	
	by words, Words–Words
	

	repositioning screen, Repositioning the Screen with z
	
	res command,
	
	:resize command, Window Resize Commands
		nvi, Multiwindow Editing
	

	resize parameter (sessionoptions
 option), The mksession Command
	
	:resize-window command
 (vile), Multiwindow Editing
	
	:restore-window command
 (vile), Multiwindow Editing
	
	:reverse-incremental-search
 command (vile), Incremental Searching
	
	rew command,
	
	:rew, :rewind
 commands (ex), Using the Argument List
	
	right margin, setting, Movement Within a Line
	
	right/left scrolling, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	rm command (Unix), Problems Saving Files
	
	ruler option, Mode Indicators
	

S
	s (substitute) command, Substituting text, More Ways to Insert Text–Numeric Arguments for Insert Commands, Insert Commands
	
	S (substitute) command, Substituting text, More Ways to Insert Text–Numeric Arguments for Insert Commands, Insert Commands
	
	s (substitute) command (ex), ex Commands, Global Replacement–Global Replacement
		context-sensitive replacement, Context-Sensitive Replacement
	
	pattern-matching examples, Pattern-Matching Examples
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	
	vile editor, The vile Editing Model
	

	-s option, Command-Line Options
		elvis editor, Important Command-Line Arguments
	
	nvi editor, Important Command-Line Arguments
	
	vile editor, Important Command-Line Arguments
	

	-S option
		elvis editor, Important Command-Line Arguments
	
	nvi editor, Important Command-Line Arguments
	

	-S option, Command-Line Options
	
	-SS option
 (elvis), Important Command-Line Arguments
	
	\s, \S
 metacharacters, Extended Regular Expressions, Extended Regular Expressions
	
	s: Vim variable, Variables
	
	:safely command
 (elvis), Interesting Features
	
	:sall (:sa)
 command (elvis), Multiwindow Editing
	
	sam editor, The vi Text Editor
	
	:save-window command
 (vile), Multiwindow Editing
	
	saving commands, Saving Commands
	
	saving edits, Saving and Quitting a File, Saving and Exiting Files, Saving and Exiting
		appending to saved files, Appending to a Saved File
	
	iterating through list of files, More Examples of Mapping Keys
	
	preserving the buffer, Recovering a Buffer
	
	saving parts of files, Saving Part of a File
	

	sb command,
	
	:sbfirst
 command, Buffer Command Synopsis
	
	:sbmod command, Buffer Command Synopsis
	
	sbn command,
	
	:sbnext
 command, Buffer Command Synopsis
	
	:sbNext
 command, Buffer Command Synopsis
	
	:sbprevious
 command, Buffer Command Synopsis
	
	:sbuffer
 command, Buffer Command Synopsis
	
	scope keyword (ctags), The New tags Format
	
	scp (secure remote copy over SSH), Editing Files in Other Places
	
	scratch buffer, Vim’s Special Buffers
	
	screen editors, The vi Text Editor
	
	screens
		left/right scrolling, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	moving cursor (see moving the cursor)
	
	multiwindow editing, Multiwindow Editing–Multiwindow Editing
		elvis editor, Multiwindow Editing–Multiwindow Editing
	
	nvi editor, Multiwindow Editing–Multiwindow Editing
	
	vile editor, Multiwindow Editing–Multiwindow Editing
	

	redrawing, Redrawing the Screen
	
	repositioning, Repositioning the Screen with z
	
	scrolling, Movement by Screens
	
	setting number of lines shown, The :set Command
	

	scripting for Vim, Categories of Features
	
	scripts
		ex, Using ex Scripts
	
	Vim, Vim Scripts–Resources
	

	:scroll-next-window-down
 command (vile), Multiwindow Editing
	
	:scroll-next-window-up
 command (vile), Multiwindow Editing
	
	scrollbars, Scrollbars
		gvim, Scrollbars
	
	xvile, Scrollbars
	

	scrolling, Movement by Screens
		without moving cursor, Repositioning the Screen with z
	

	scrolling right/left, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	se command,
	
	searchincr option (nvi), Incremental Searching, Incremental Searching, Incremental Searching
	
	searching
		for class of
 words, Search for General Class of Words
	
	metacharacters for, Pattern-Matching Rules
	

	searching for patterns, Movement by Searches
		configuration options for, Some Useful Options
	
	ex commands for, Search Patterns, Global Searches
	
	global pattern-matching rules, Pattern-Matching Rules
		examples, Pattern-Matching Examples
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	

	incremental searching (vi clones), Incremental Searching
		nvi editor, Incremental Searching
	
	vile editor, Incremental Searching
	

	making case-insensitive, The :set Command
	
	matching brackets, A Special Search Command
	
	opening files at specific place, Advancing to a Specific Place
	
	replacing text and (see replacing text)
	
	within lines, Current Line Searches
	
	wrapping searches, Movement by Searches, Repeating Searches
	

	searching numbered buffers, Recovering Deletions
	
	sections, moving by, Movement by Text Blocks
	
	security, elvis, Interesting Features
	
	sed stream editor, Beyond ex
	
	select mode (gvim), Using the Mouse
	
	selecting text with xvile, Selections
	
	semicolon (;)
		for line ranges (ex), Redefining the Current Line Position
	
	repeat search command, Current Line Searches
	

	sentences
		delimiters for, Movement by Text Blocks
	
	moving by, Movement by Text Blocks
	

	sesdir parameter (sessionoptions
 option), The mksession Command
	
	session context for Vim, Categories of Features
	
	session files, elvis, The Session File
	
	sessionoptions option, The mksession Command
	
	sessions (Vim), Multiple Windows in Vim
	
	:set command, Categories of Features, The :set Command
		commands in .exrc files, The .exrc File
	
	ex, Customizing vi
		list of options for, Setting Options
	
	viewing current options, The :set Command
	

	mouse options and, Using the Mouse
	

	:set-window command
 (vile), Multiwindow Editing
	
	:sfind command, Options During Splits
	
	sftp (secure FTP), Editing Files in Other Places
	
	:sh (create shell)
 command (ex), Executing Unix Commands
	
	:sh command (ex), Problems Saving Files,
	
	shell, Unix, Executing Unix Commands
	
	shiftwidth, using outline modes, Outlining
	
	shmode mode (vile; example), Major Modes
	
	:show-history command
 (vile), Command-Line History and Completion
	
	:show-tagstack
 command (vile), Tag Stacks
	
	:show-commands
 command (vile), Online Help and Other Documentation
	
	showmode option, Mode Indicators
	
	:shrink-window command
 (vile), Multiwindow Editing
	
	sidescroll option (nvi), Left-Right Scrolling
	
	sidescroll value, Left-Right Scrolling, Left-Right Scrolling
	
	sidescrolloff option, What’s My Line (Size)?
	
	sideways scrolling, Left-Right Scrolling
		elvis editor, Left-Right Scrolling
	
	nvi editor, Left-Right Scrolling
	
	vile editor, Left-Right Scrolling
	

	slash (/)
		pathname separator, Opening a File
	
	referring to marks (vile), Visual Mode
	
	search command, The vi Text Editor, Movement by Searches
		opening files at specific place, Advancing to a Specific Place
	

	slash parameter (sessionoptions option), The mksession Command
	
	:slast (:sl) command
 (elvis), Multiwindow Editing
	
	smart indenting, Auto and Smart Indenting–Keyword and Dictionary Word Completion
	
	smartindent method, Auto and Smart Indenting
	
	sn command,
	
	:snew (:sne) command
 (elvis), Multiwindow Editing
	
	:sNext (:sN) command
 (elvis), Multiwindow Editing, Multiwindow Editing
	
	:so command (ex), Alternate Environments
	
	Solaris vi
		set command options (list), Solaris vi Options
	
	tag stacks, Using Tags, Solaris vi–Exuberant ctags and Vim
	
	word abbreviations, Word Abbreviation
	

	sort command (Unix), Executing Unix Commands
	
	sorting
		text blocks (example), Sorting Text Blocks: A Sample ex Script
	

	source code editing, Editing Program Source Code
		indentation control, Indentation Control
	
	matching brackets, A Special Search Command
	
	using tags, Using Tags, Enhanced Tags–Exuberant ctags and Vim
	

	sourced, finding startup files, Starting gvim
	
	sp command,
	
	spaces (see whitespace)
	
	special buffers, Vim’s Special Buffers
	
	spellchecking, The vi Text Editor
	
	Split button (elvis), The Toolbar
	
	:split command, Multiwindow Editing Inside Vim
		buffers, using, Buffers and Their Interaction with Windows
	
	elvis, Multiwindow Editing
	
	opening new windows, New Windows
	
	vile, Multiwindow Editing
	

	:split-current-window
 command (vile), Multiwindow Editing, Multiwindow Editing
	
	split windows (see multiwindow editing)
	
	spr command,
	
	:srewind (:sre)
 command (elvis), Multiwindow Editing
	
	st command,
	
	:stack (:stac)
 command (elvis), Tag Stacks
	
	stacks, tags, Tag Stacks–Exuberant ctags and Vim
		elvis editor, Tag Stacks
	
	nvi editor, Tag Stacks–Tag Stacks
	
	Solaris vi, Using Tags, Solaris vi–Exuberant ctags and Vim
	
	vile editor, Tag Stacks
	

	:stag (:sta) command
 (elvis), Multiwindow Editing
	
	:stag[!] tag, Playing Tag with Windows
	
	starting vi (see invoking vi)
	
	state transitions for Vim, Categories of Features
	
	status line (see prompt line)
	
	status-line commands, Status-Line Commands
	
	statusline option, A Nice Vim Piggybacking Trick
	
	stevie editor, Author and History, Author and History
	
	stopshell option (elvis), Options
	
	strftime() function, Using the strftime() function
	
	string display mode (elvis), Syntax Highlighting
	
	struct keyword (ctags), The New tags Format
	
	sts command, Tag Stacking
	
	stty command, A Brief Historical Perspective
	
	su command,
	
	substitute (:s)
 command (ex), ex Commands, Global Replacement–Global Replacement
		context-sensitive replacement, Context-Sensitive Replacement
	
	pattern-matching examples, Pattern-Matching Examples
	
	replacement-string metacharacters, Metacharacters Used in Replacement Strings
	
	search-pattern metacharacters, Metacharacters Used in Search Patterns
	
	substitution tricks, More Substitution Tricks
	
	vile editor, The vile Editing Model
	

	substituting text (see changing text)
	
	:sunhide
 command, Buffer Command Synopsis
	
	sv command,
	
	:sview command, Options During Splits
	
	switching database items (example), Switching Items in a Textual Database
	
	switching words (example), Using the map Command, More Examples of Mapping Keys
	
	:syntax command, Getting Started
	
	syntax display mode (elvis), Display Modes
	
	syntax extensions for Vim, Categories of Features
	
	syntax files, Overriding syntax files
	
	syntax folding method, A Few Words About the Other Fold Methods
	
	syntax highlighting, Syntax Highlighting, Syntax Highlighting–Compiling and Checking Errors with Vim
		customizing, Customization
	
	elvis display modes, Syntax Highlighting, Display Modes–Display Modes
	
	vile editor, Syntax Highlighting
	

	syntax method, creating folds, Folding and Outlining (Outline Mode)
	
	system failure, recovering after, Recovering a Buffer
	

T
	:t (copy) command
 (ex), Editing with ex
	
	t (search line) command, Current Line Searches
	
	T (search line) command, Current Line Searches
	
	^T command, Tag Stacking
	
	\t metacharacter, Extended Regular Expressions
	
	-t option, Command-Line Options
		elvis editor, Important Command-Line Arguments
	
	nvi editor, Important Command-Line Arguments
	
	vile editor, Important Command-Line Arguments
	

	-T option, Command-Line Options
	
	t: Vim variable, Variables
	
	:Ta, Tag commands
 (nvi), Multiwindow Editing, Tag Stacks
	
	ta, tag commands
 (nvi), Tag Stacks
	
	:ta, tag
 commands (Solaris vi), Solaris vi
	
	<TAB>, using
 menu entries, Basic menu customization
	
	:tabclose
 command, Tabbed Editing
	
	:tabnew command, Tabbed Editing
	
	:tabonly
 command, Tabbed Editing
	
	tabpages parameter (sessionoptions
 option), The mksession Command
	
	tabs, editing, Tabbed Editing
	
	:tag (:ta)
 command
		elvis editor, Tag Stacks
	
	vile editor, Tag Stacks
	

	:tag command, Tag Stacks–Exuberant ctags and Vim, Tag Stacks
	
	:tag command (ex), Using Tags
	
	tag stacks, Tag Stacks–Exuberant ctags and Vim, Tag Stacking–Syntax Highlighting
		elvis editor, Tag Stacks
	
	nvi editor, Tag Stacks–Tag Stacks
	
	Solaris vi, Using Tags, Solaris vi–Exuberant ctags and Vim
	
	vile editor, Tag Stacks
	

	tag windowing commands, Playing Tag with Windows
	
	tagignorecase option (vile), Tag Stacks
	
	taglength option, Tag Stacks
		elvis editor, Tag Stacks
	
	Solaris vi, Solaris vi
	
	vile editor, Tag Stacks
	

	:tagp,
 tagpop commands (nvi), Tag Stacks
	
	tagpath option
		elvis editor, Tag Stacks
	
	Solaris vi, Solaris vi
	

	tagprg option (elvis), Tag Stacks
	
	tagrelative option (vile), Tag Stacks
	
	:tags command
 (Solaris vi), Exuberant ctags and Vim
	
	tags file format, The New tags Format–The New tags Format, Tag Stacks
	
	tags option
		elvis editor, Tag Stacks
	
	nvi editor, Tag Stacks
	
	Solaris vi, Solaris vi
	
	vile editor, Tag Stacks
	

	tagstack option
		elvis editor, Tag Stacks
	
	Solaris vi, Solaris vi
	

	:tagt,
 tagtop commands (nvi), Tag Stacks
	
	tagword option (vile), Tag Stacks
	
	TERM environment variable, A Brief Historical Perspective, Problems Opening Files
		opening files and, Problems Opening Files
	

	termcap entries, Problems Opening Files, Customizing vi
	
	“Termcap entry too
 long” message, Problems Opening Files
	
	termcap library, A Brief Historical Perspective
	
	terminal type, Problems Opening Files
	
	terminfo entries, Problems Opening Files, Customizing vi
	
	terminfo library, A Brief Historical Perspective
	
	tex display mode (elvis), Display Modes–Display Modes
	
	Tex formatter, The vi Text Editor
	
	text, Review of Basic vi Commands
		(see also characters; lines; words)
	
	case conversions, Changing Case, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	copying (yank-and-put), Simple Edits, Copying Text
	
	deleting, Simple Edits, Deleting Text, Current Line Searches
		by characters, vi Commands, Characters
	
	with ex editor, Search Patterns
	
	by lines, Lines
	
	named buffers for, Copying Text, Yanking to Named Buffers, Edits Between Files
	
	numbered buffers for, Moving Text, Making Use of Buffers
	
	recovering deletions, Recovering Deletions
	
	undoing deletions, Problems with deletions
	
	by words, Words
	

	filtering through Unix commands, Filtering Text Through a Command
	
	finding and deleting parentheses, More Examples of Mapping Keys
	
	indentation control, Indentation Control
	
	inserting, More Ways to Insert Text
		a (append) command, Simple Edits, Appending Text
	
	handling long insertions, Repeat, More Examples of Mapping Keys, Arbitrary Length Lines and Binary Data, Arbitrary Length Lines and Binary Data, Arbitrary Length Lines and Binary Data, Arbitrary Length Lines and Binary Data
	
	in insert mode, Modus Operandi, vi Commands
	

	moving, Moving Text
		switching database items (example), Switching Items in a Textual Database
	

	moving (delete-and-put), Simple Edits
	
	reformatting (vile), Miscellaneous Small Features
	
	replacing (changing), Simple Edits, Changing Text, Changing through searching
		globally, Global Replacement
	

	searching for (see pattern searching)
	
	transposing characters, Transposing two letters
	

	text blocks
		filtering through Unix commands, Filtering Text Through a Command
	
	moving by patterns, Block Move by Patterns
	
	range of lines (ex), Defining a Range of Lines, Redefining the Current Line Position
	
	saving parts of files, Saving Part of a File
	
	sorting (example), Sorting Text Blocks: A Sample ex Script
	

	text blocks, moving by, Movement by Text Blocks, Movement by Text Blocks
	
	text editors, The vi Text Editor
	
	textwidth option, Editing Binary Files
	
	thesaurus option, Completion by thesaurus
	
	tilde (~)
		:~ (substitute using last search pattern) command
 (ex), More Substitution Tricks
	
	along left screen margin, Opening a File
	
	case conversion command, Changing Case
	
	folding, Manual Folding
	
	as last
 replacement text, Metacharacters Used in Search Patterns
	
	metacharacter, Metacharacters Used in Replacement Strings, Extended Regular Expressions
	

	tl (taglength) option
		elvis editor, Tag Stacks
	
	Solaris vi, Solaris vi
	

	/tmp (special
 filename, nvi), Interesting Features
	
	:toggle-buffer-list
 command (vile), Multiwindow Editing
	
	toggle options (ex), setting, The :set Command
	
	TOhtml command, HTML Your Text
	
	toolbar option, GUI Options and Command Synopsis
	
	toolbar, elvis, The Toolbar
	
	toolbars, Toolbars
	
	tools, programming, Vim Enhancements for Programmers–Some Final Thoughts on Vim for Writing Programs
	
	:topleft command, Conditional Split Commands
	
	transitions (state) for Vim, Categories of Features
	
	transparent edition, Categories of Features
	
	transposing characters, Transposing two letters
	
	transposing words, Transposing two letters
	
	transposing words (example), Using the map Command, More Examples of Mapping Keys
	
	troff
		alphabetizing glossary (example), Sorting Text Blocks: A Sample ex Script
	
	converting glossary to (example), A Complex Mapping Example
	
	formatting package, The vi Text Editor
	
	put emboldening codes around words, More Examples of Mapping Keys
	

	troubleshooting
		deleting text, Problems with deletions–Characters
	

	:tselect command, Playing Tag with Windows
	
	type-over (see c command)
	

U
	u (undo) command, Problems with deletions, Undo–Undo
		buffer recovery, Recovering Deletions
	

	U (undo) command, Problems with deletions, Undo
	
	-U gvimrc
 option, GUI Options and Command Synopsis
	
	\u
 metacharacter, Metacharacters Used in Replacement Strings–Metacharacters Used in Replacement Strings
	
	\U
 metacharacter, Metacharacters Used in Replacement Strings
	
	-u option, Command-Line Options
	
	u status flag, Buffers and Their Interaction with Windows
	
	underscore (_), using in file names, Opening a File
	
	undoing, Undo–Undo
		infinitely (vi clones), Infinite Undo
		elvis editor, Infinite Undo
	
	nvi editor, Infinite Undo
	
	vile editor, Infinite Undo
	

	recovering deletions, Problems with deletions, Recovering Deletions
	
	text deletions, Problems with deletions
	

	undolevels option, Undoing Undos
		elvis editor, Infinite Undo
	

	undolimit option (vile), Infinite Undo
	
	undos, Undoing Undos
	
	:unhide
 command, Buffer Command Synopsis
	
	Unix
		commands, Executing Unix Commands
	
	Vim, installing, Getting Vim for Unix and GNU/Linux
	

	unix parameter (sessionoptions option), The mksession Command
	
	“Unknown terminal
 type” message, Problems Opening Files
	
	unm command,
	
	uppercase, converting to lowercase, Changing Case, Metacharacters Used in Replacement Strings
	
	/usr/tmp directory, Problems Saving Files
	

V
	-v option, Command-Line Options
		vile editor, Important Command-Line Arguments
	

	-V option, Command-Line Options
	
	-V option (elvis), Important Command-Line Arguments
	
	v, V commands (elvis block mode), Visual Mode
	
	v: Vim variable, Variables
	
	v:fname_in variable, What’s the Difference?
	
	v:fname_new variable, What’s the Difference?
	
	v:fname_out variable, What’s the Difference?
	
	/var/tmp directory, Problems Saving Files
	
	variable display mode (elvis), Syntax Highlighting
	
	variables, Variables–Variables
		buffer, Buffer Variables
	
	global, using Vim scripts, Tuning a Vim Script with Global Variables
	
	types, More About Variables
	
	Vim, Variables
	

	--version
 option, Command-Line Options
	
	versions of vi (see clones, vi)
	
	vertical bar (|)
		alternation metacharacter, Extended Regular Expressions, Extended Regular Expressions
	
	\|
 metacharacter, Extended Regular Expressions, Extended Regular Expressions, Extended Regular Expressions
	
	for combining ex
 commands, Combining ex Commands
	
	cursor movement command, Movement on the current line
	
	manual folding and, Manual Folding
	

	vertically splitting windows, Multiwindow Editing Inside Vim
	
	vi command (Unix)
		command-line options, Options When Starting vi
	
	editing multiple files, Invoking vi on Multiple Files
	

	:vi command, Problem Checklist, Command-Line Options
	
	vi commands, vi Commands
		bottom-line, The vi Text Editor
	
	general form of, Words
	
	numeric arguments for, Numeric Arguments, Numeric Arguments for Insert Commands
	
	repeating (see repeating commands)
	
	running when starting vi, Advancing to a Specific Place
	
	undoing (see undoing)
	

	“vi Powered” logo, vi Powered!
	
	vi text editor
		clones of (see clones, vi)
	
	customizing editing environment, Customizing vi
	
	Emacs editor versus, Tastes Great, Less Filling
	
	filtering text with, Filtering text with vi
	
	Internet and, vi and the Internet
	
	quotes about, vi Quotes
	
	starting (see invoking vi)
	

	vi.exrc file (nvi), Initialization
	
	view command (Unix), Read-Only Mode
	
	:view-file command
 (vile), Multiwindow Editing
	
	view mode, Problems Opening Files
	
	vile (vi clone), Recovering a Buffer, vile: vi Like Emacs–Sources and Supported Operating Systems
		documentation and online help, Online Help and Other Documentation
	
	editing model, The vile Editing Model
	
	extended regular expressions, Extended Regular Expressions–Extended Regular Expressions
	
	feature summary, Editor Comparison Summary
	
	important command-line arguments, Important Command-Line Arguments–Important Command-Line Arguments
	
	improvements over vi, Improved Editing Facilities–Visual Mode
	
	infinite undo facility, Infinite Undo
	
	initialization of, Initialization
	
	interesting features, Interesting Features–Miscellaneous Small Features
	
	line length, Arbitrary Length Lines and Binary Data
	
	mode indicators, Mode Indicators
	
	multiwindow editing, Multiwindow Editing–Multiwindow Editing
	
	obtaining source code, Sources and Supported Operating Systems
	
	procedure language for, The Procedure Language
	
	programming assistance, Programming Assistance–Syntax Highlighting
	
	set command options (list), vile 9.6 Options
	
	sideways scrolling, Left-Right Scrolling
	
	tag stacks, Tag Stacks
	
	word abbreviations, Word Abbreviation
	

	VILEINIT environment variable (vile), Initialization
	
	.vilemenu file, Initialization
	
	.vilemenu file
 (vile), Adding menus
	
	VILE_HELP_FILE environment variable (vile), Online Help and Other Documentation
	
	VILE_STARTUP_FILE environment variable
 (vile), Initialization
	
	VILE_STARTUP_PATH environment variable (vile), Online Help and Other Documentation
	
	Vim, Vim (vi Improved): An Introduction–Summary
		extended regular expressions, Extended Regular Expressions–Extended Regular Expressions
	
	feature summary, Editor Comparison Summary
	
	infinite undo facility, Infinite Undo
	
	line length, Arbitrary Length Lines and Binary Data
	
	mode indicators, Mode Indicators
	
	multiple windows in, Multiple Windows in Vim–Summary
	
	set command options (list), Vim 7.1 Options
	
	sideways scrolling, Left-Right Scrolling
	
	word abbreviations, Word Abbreviation
	

	vimdiff command, A Few Words About the Other Fold Methods, What’s the Difference?
	
	viminfo option, The viminfo Option
	
	.vimrc startup file, Starting gvim
	
	VimResized command, Autocommands
	
	visual (block) mode, Visual Mode
		elvis editor, Visual Mode
	
	vile editor, Visual Mode
	

	visual match facility (vile), Incremental Searching
	
	visual mode, Using the Mouse
		problems getting to, Problems Getting to Visual Mode
	

	“Visual
 needs addressable cursor or upline capability”
 message, Problems Opening Files
	
	Visual Studio, Vim Enhancements for Programmers
	
	:viusage command
 (nvi), Online Help and Other Documentation
	
	:vnew command, Options During Splits
	
	:vsplit command, Multiwindow Editing Inside Vim, Options During Splits
	

W
	w (move word) command, Movement by Text Blocks
	
	W (move word) command, Movement by Text Blocks
	
	:w (write) command, Calling in New Files
	
	:w (write) command
 (ex), Saving and Quitting a File, Saving and Exiting Files
		renaming buffer, Renaming the Buffer
	
	saving parts of files, Saving Part of a File
	
	:w! command, Saving and Exiting Files
	

	^W command
		cursors, moving around in windows and, Moving Around Windows (Getting Your Cursor from Here to
 There)
	

	^W key sequence, Multiwindow Editing Inside Vim
	
	-w option, Command-Line Options
		nvi editor, Important Command-Line Arguments
	

	-W option, Command-Line Options
	
	\w, \W
 metacharacters, Extended Regular Expressions
	
	^W- command, Resizing Command Synopsis
	
	w: Vim variable, Variables
	
	^W< command, Resizing Command Synopsis
	
	^W= command, Resizing Command Synopsis
	
	^W> command, Resizing Command Synopsis
	
	^Wc command, Closing and Quitting Windows
	
	web sites for vi, vi Web Sites
	
	^Wf command, Playing Tag with Windows
	
	^Wg] command, Playing Tag with Windows
	
	^Wg^J command, Playing Tag with Windows
	
	^WH command, Moving Windows and Changing Their Layout
	
	whitespace
		deleting words and, Words
	
	indentation, Indentation Control
	
	newline characters, Movement Within a Line, Arbitrary Length Lines and Binary Data
	
	sentence delimiters, Movement by Text Blocks
	
	spaces in filenames, Opening a File, ex Commands
	

	windo command, Buffer Commands
	
	:window (:wi)
 command (elvis), Multiwindow Editing
	
	Window menus, gvim’s Window menu
	
	window option, The :set Command
	
	windows, Opening Windows
		(see also multiwindow editing)
	
	closing and quitting, Closing and Quitting Windows
	
	cursors, moving around in, Moving Around Windows (Getting Your Cursor from Here to
 There)
	
	moving around, Moving Windows Around–Resizing Windows
	
	opening, Opening Windows–Moving Around Windows (Getting Your Cursor from Here to
 There)
	
	resizing, Resizing Windows–Buffers and Their Interaction with Windows
	
	tag commands, Playing Tag with Windows
	

	Windows (Microsoft) (see MS Windows)
	
	Windows files, editing with vile, Miscellaneous Small Features
	
	WinEnter command, Autocommands
	
	winheight option, Multiwindow Initiation from the Command Line (Shell), Window Sizing Options
	
	WinLeave autocommand, Options During Splits
	
	WinLeave command, Autocommands
	
	winminheight option, Resizing Command Synopsis
	
	winminwidth option, Resizing Command Synopsis
	
	winpos parameter (sessionoptions
 option), The mksession Command
	
	winsize parameter (sessionoptions
 option), The mksession Command
	
	winvile editor, Building winvile–winvile Basic Appearance and Functionality
	
	winwidth option, Multiwindow Initiation from the Command Line (Shell), Window Sizing Options
	
	^WJ command, Moving Windows and Changing Their Layout, Playing Tag with Windows
	
	^WK command, Moving Windows and Changing Their Layout
	
	^WL command, Moving Windows and Changing Their Layout
	
	wm (wrapmargin) option, Movement Within a Line, Some Useful Options
		disabling for long insertions, More Examples of Mapping Keys
	
	repeating long insertions, Repeat
	

	word abbreviations, Word Abbreviation
	
	word completion, Keyword and Dictionary Word Completion–Tag Stacking
	
	words, Review of Basic vi Commands
		(see also characters; lines; text)
	
	deleting by, Words
		undoing deletions, Problems with deletions
	

	deleting parentheses around (example), More Examples of Mapping Keys
	
	moving by, Movement by Text Blocks, Movement by Text Blocks
	
	replacing (changing), Changing Text, Words–Words
	
	searching for general class of, Search for General Class of Words
	
	to start/end of (see characters)
	
	transposing, Transposing two letters, Using the map Command, More Examples of Mapping Keys
	
	troff emboldening codes around, More Examples of Mapping Keys
	

	:wq command, Saving and Quitting a File
	
	^Wq command, Closing and Quitting Windows
	
	:wquit command
 (elvis), Multiwindow Editing
	
	^Wr command, Window Move Commands: Synopsis
	
	^WR command, Window Move Commands: Synopsis
	
	wrap option, What’s My Line (Size)?
		elvis editor, Left-Right Scrolling
	

	wrapmargin (wm) option, Movement Within a Line, Some Useful Options, Editing Binary Files
		disabling for long insertions, More Examples of Mapping Keys
	
	repeating long insertions, Repeat
	

	wrapping searches, Movement by Searches, Repeating Searches
	
	wrapscan option, Repeating Searches, Advancing to a Specific Place, Some Useful Options
	
	write-hook option (vile), The Procedure Language
	
	write permission, Problems Opening Files, Problems Saving Files
	
	writebackup option, Backups with Vim
	
	writing the buffer
		autowrite and autosave options, Recovering a Buffer
	
	overriding read-only mode, Read-Only Mode
	

	“writing
 the buffer”, saving edits and, Opening and Closing Files
	
	^Ws command, Options During Splits
	
	^WS command, Options During Splits
	
	^WT command, Moving Windows and Changing Their Layout
	
	^Wx command, Window Move Commands: Synopsis
	
	^W^F command, Playing Tag with Windows
	
	^W^J command, Playing Tag with Windows
	
	^W^Q command, Closing and Quitting Windows
	
	^W^R command, Window Move Commands: Synopsis
	
	^W^S command, Options During Splits
	
	^W^X command, Window Move Commands: Synopsis
	
	^W^_ command, Resizing Command Synopsis
	
	^W_ command, Resizing Command Synopsis
	
	^W| command, Resizing Command Synopsis
	

X
	x (delete character) command, Characters, Changing and deleting text
		xp command, Transposing two letters
	

	X (delete character) command, Characters, Changing and deleting text
	
	:x (write
 and quit) command (ex), Saving and Exiting Files, Command-Line Options
	
	-x option, Command-Line Options
	
	X resources for elvis, Options
	
	X Window System, The vi Text Editor
		using gvim, Graphical Vim (gvim), gvim in the X Window System
	

	X11 interface
		elvis, Initialization Steps, GUI Interfaces, Options
	
	vile, GUI Interfaces
	

	XEmacs text editor, The vi Text Editor
	
	xscrollbar option (elvis), Options
	
	xvile editor, GUI Interfaces–Adding menus
	
	XVILE_MENU environment variable (vile), Initialization
	

Y
	Y (yank line) command, Copying Text, Copying and moving
	
	y (yank) command, Simple Edits, Copying Text
		examples of use, Review of Basic vi Commands, More Command Combinations
	
	with named buffers, Copying Text, Yanking to Named Buffers, Edits Between Files
	
	numbered buffers for, Moving Text, Making Use of Buffers
	
	yy command, Copying Text
	

	y (yank) command (ex), Edits Between Files
	
	-y option, Command-Line Options
	
	y$ command, Copying and moving
	
	yanking text, Simple Edits
		named buffers for, Copying Text, Yanking to Named Buffers, Edits Between Files
	
	numbered buffers for, Moving Text, Making Use of Buffers
	

	ye command, Copying and moving
	
	yw command, Copying and moving
	
	yy command, Copying and moving
	

Z
	z command, Repositioning the Screen with z
	
	-Z option, Command-Line Options
	
	zA fold command, The Fold Commands
	
	za fold command, The Fold Commands
	
	zC fold command, The Fold Commands
	
	zc fold command, The Fold Commands, Manual Folding, Manual Folding
	
	zD fold command, The Fold Commands, A Few Words About the Other Fold Methods
	
	zd fold command, The Fold Commands
	
	zE fold command, The Fold Commands
	
	zf fold command, The Fold Commands
		cursors, creating folds from, Manual Folding
	

	zi fold command, The Fold Commands
	
	Zintz, Walter, Using :g to Repeat a Command
	
	zj fold command, The Fold Commands
	
	zk fold command, The Fold Commands
	
	zM fold command, The Fold Commands
	
	zm fold command, The Fold Commands, Outlining
	
	zN fold command, The Fold Commands
	
	zn fold command, The Fold Commands
	
	zo command, Manual Folding
	
	zO fold command, The Fold Commands
	
	zo fold command, The Fold Commands
	
	zr fold command, The Fold Commands, Outlining
	
	ZZ (quit vi) command, Saving and Quitting a File
	
	ZZ command, Saving and Exiting
	

OEBPS/httpatomoreillycomsourceoreillyimages2055163.png
do x

(spiit s
[Close Other(s) _ ~“Wo
T
e
[Min Height AWL

[Max wadth ~
i Widi ~wif

OEBPS/httpatomoreillycomsourceoreillyimages2055515.png
USER FRIENDLY by Illiad

STEF, DO YOU HAVE ANY IDEA_ |2 YOU'VE UPSET
HAT'S HAPPENING OUT THERE? | = IT MOST CERTANLY 1S NOT THE BALANCE OF
S0 L WiorRe. E EIERRNVOUR s G ere e
WROTE THE SELF-REPLICATION | § HAVE CREATED CHAOS OUT SOUNDS LIKE g rHNG OVER
ALGORTHM A LITTLE TOO WELL. é THERE IN THE LKIX WORLD! | SRESTNEWS 75 emaCs
THAT'S \ = I \
GREAT A £ v
NEWS. .
/ 1
TYPE E
TYPE %
-
2
5
8

OEBPS/httpatomoreillycomsourceoreillyimages2055267.png

OEBPS/oreilly_large.png.jpg
OREILLY®

OEBPS/httpatomoreillycomsourceoreillyimages2055291.png

OEBPS/keys/period.png

OEBPS/httpatomoreillycomsourceoreillyimages2055258.png

OEBPS/httpatomoreillycomsourceoreillyimages2055115.png
e MyMenu Edt Tools Syntax Buffers Window Help
&l»a@ B BRRAISSA Taa ? R

114.m | \eltermcap | ~\vinre | ~\guic | helo.c | word.c | DNo Name] [WOV ¥ 12.xm1 | o Nam
<chapter labe]

i
2
3
"

OEBPS/httpatomoreillycomsourceoreillyimages2055307.png

OEBPS/httpatomoreillycomsourceoreillyimages2055278.png

OEBPS/keys/lca.png

OEBPS/keys/lcd.png

OEBPS/keys/tilde.png

OEBPS/keys/lcc.png

OEBPS/keys/lcf.png

OEBPS/keys/lce.png

OEBPS/keys/lci.png

OEBPS/keys/lcn.png

OEBPS/keys/lcp.png

OEBPS/keys/lcr.png

OEBPS/keys/lcs.png

OEBPS/keys/lcv.png

OEBPS/keys/lcu.png

OEBPS/keys/lcx.png

OEBPS/keys/lcw.png

OEBPS/keys/lcz.png

OEBPS/httpatomoreillycomsourceoreillyimages2055318.png

OEBPS/keys/lcy.png

OEBPS/httpatomoreillycomsourceoreillyimages2055322.png
13

14 iF (thiscode
5«

16

17 printf ()5

18 +-- 3 lines: printf (08 some other line\n");-
2

22 >

23

B Hr iR An"):

anysense)

OEBPS/keys/ctrl.png
CTRL

OEBPS/DejaVuSans-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages2055262.png

OEBPS/UbuntuMono-Regular.otf

OEBPS/keys/zero.png

OEBPS/keys/hat.png

OEBPS/keys/capr.png

OEBPS/keys/caps.png

OEBPS/keys/capl.png

OEBPS/keys/money.png

OEBPS/keys/capj.png

OEBPS/keys/caph.png

OEBPS/keys/capi.png

OEBPS/keys/capf.png

OEBPS/keys/capg.png

OEBPS/keys/capd.png

OEBPS/keys/capc.png

OEBPS/keys/enter.png
3

ENTER

OEBPS/httpatomoreillycomsourceoreillyimages2055097.png.jpg
QEES 9@ +» U0 Sina o098 T

el

=8 x
x H e
X H %

Wk omE Ok xes X
% SO B - =
H O T
5 5B E %
X I T < -

RKEOKKEKK KEKRK KKAKK XRKAK

2) 710/ 20 1120819 an

XX
X%
RAKEXRK
q %
R
KKK KKK REKEKXKAKK

20271072008 112816 _

OEBPS/httpatomoreillycomsourceoreillyimages2055399.png
highlight Conment

Connent: xxx tern=bold cternfg=s guifg-Blue
e e S e - N

OEBPS/httpatomoreillycomsourceoreillyimages2055460.png
11 text text This is a very long line exceeding width of screen. t
ext text more text than a line should ever have unless you're j
ust doing it For the sake of an example but even in that case i
t's an awful lot of text for just one linet :-)

12

OEBPS/httpatomoreillycomsourceoreillyimages2055471.png
Search
Search for plain text —— not a regulr expression

drestion
igorecase
wrapscan

[orward baskovare]

OEBPS/keys/slash.png

